High Impendance Fault Detection in Distribution System under Distributed Generation


Manohar Singh




How to Cite
Singh, M. (2014). High Impendance Fault Detection in Distribution System under Distributed Generation. Power Research, 245–252. Retrieved from https://cprijournal.in/index.php/pr/article/view/810


  1. B. Bhalja and R. P. Maheshwari, “Philosophy of protection for multi-terminal and double-circuit lines,” In Proc. Int. Conf. on Computer Applications in Electrical Engineering Recent Advances, Roorkee, India, Sept. 28–Oct. 1, 2005, pp. 582–588.
  2. C. G. Wester, “High impedance fault detection on distribution systems,” In Proc. 42nd Rural Electric Power Conference, 1998, pp. c5–1–5.
  3. C. L. Benner and B. D. Russel, “Practical high-impedance fault detection on distribution feeders,” IEEE Transactions on Industry Applications, vol. 33, no. 3, pp. 635–640, May. 1997.
  4. F. G. Jota and P. R. S. Jota, “High-impedance fault identification using a fuzzy reasoning system,” In Proc. of IEE Generation, Transmission and Distribution, vol. 145, no. 6, pp. 656–661, Nov. 1998
  5. Zhang Chao, JiJian-ren, et al. “Effect of distributed generation on relay protection and automation of distribution network,” East China Electric Power, vol.34, pp.2326, Sep.2006.
  6. Kim C.H., Aggarwal, R., “Wavelet transforms in Power systems,” IET Power Engineering Journal, vol. 15, pp. 193-200, Aug. 2001.
  7. S. G. Mallat, “A theory for multi-resolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.11, no. 7, pp. 674–693, Jul. 1989.
  8. C. S. Burrus, R. A. Gopinath, and H. Guo, Introduction to Wavelets and Wavelet Transform: A Primer. Englewood Cliffs, NJ: Prentice-Hall, 1998.
  9. D. Das, N.K. Singh and A.K.Sinha, “A Comparison of Fourier transform and wavelet transform methods for detection and classification of faults on transmission lines”, In Proc. of IEEE Power India Conf., 2006.
  10. S. J. Huang and C. T. Hsieh, “High-impedance fault detection utilizing a Morlet wavelet transform approach,” IEEE Trans. Power Delivery, vol. 14, no. 4, pp. 1401– 1410, Oct. 1999.
  11. S. J. Lee, M. S. Choi, S. H. Kang, B. G. Jin, D. S. Lee, B. S. Ahn, N. S. Yoon, H. Y. Kim, and S. B. Wee, “An intelligent and efficient fault location and diagnosis scheme for radial distribution systems,” IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 524–532, Apr. 2004.
  12. A. E. Emanuel, D. Cygansky, J. A. Orr, S. Shiller, and E. M. Gulachenski, “High impedance fault arcing on sandy soil in 15kv distribution feeders: Contributions to the evaluation of the low frequency spectrum,” IEEE Trans. on Power Delivery, vol. 5, no. 2, pp. 676–686, Apr. 1990.
  13. M. E. Baran and I. El-Markaby, “Fault analysis on distribution feeders with distributed generators,” EEE Transactions on Power Systems, vol. 20, no. 4, pp. 17571764, Oct. 2005.
  14. D. T. W. Chan and X. Yibin, “A novel technique for high impedance fault identification,” IEEE Trans. Power Delivery., vol. 13, no. 3, pp. 738–744, Jul.1998.
  15. S. Ebron, D. L. Lubkeman, and M. White, “A neural network approach to the detection of incipient faults on power distribution feeders,” IEEE Trans. Power Delivery., vol. 5, no. 2, pp. 905–914, Apr. 1990.
  16. H.Khorashadi-Zadeh, “Artificial neural network approach to fault classification for double circuit transmission lines,” In Proc. of IEEE Transmission and Distribution Conf., pp.859-862, 2004.
  17. MATLAB 7.1 User’s Guides for SimPower System, Wavelet Toolbox and Neural Network Toolbox.