Transmission Network Expansion Planning – A Critical Review

##plugins.themes.academic_pro.article.main##

Manisha Dinkar Khardenvis
Prashant Prabhakar Bedekar
Vijay Narhar Pande

Abstract

Transmission Network Expansion Planning (TNEP) is determination of an optimal network configuration that satisfies the operational conditions for forecasted load growth under a particular generation expansion plan. TNEP may be broadly classified into static and dynamic network planning. Static TNEP (STNEP) deals with finding where and which type of new lines should be installed in an optimal way that minimizes the installation and operational cost. Dynamic TNEP (DTNEP) is more complex and aims at determining when to install the new lines (in addition to determination of where and which type of lines to be installed). Researchers have used mathematical optimization methods, heuristic methods and meta-heuristic methods to solve STNEP problem. DTNEP problem have been tackled using mathematical optimization methods and meta-heuristic methods by the researchers. This paper compiles the significant developments made in the area of TNEP using conventional (mathematical) optimization methods, and advanced (heuristic & meta-heuristic) optimization methods. After a thorough study of vast literature available on TNEP, critical comments and future scope have been presented to make the review study focused and useful for the researchers in this area.

##plugins.themes.academic_pro.article.details##

How to Cite
Khardenvis, M. D., Bedekar, P. P., & Pande, V. N. (2019). Transmission Network Expansion Planning – A Critical Review. Power Research - A Journal of CPRI, 7–15. https://doi.org/10.33686/pwj.v15i1.144003

References

  1. Lai LL. Intelligent system applications in power engineering. John Wiley & Sons, West Sussex; 1998.
  2. Wang X, McDonald JR. Modern power system planning. McGraw Hill, New York; 1994.
  3. Seifi H, Sepasian MS. Electric power system planning: Issues. Algorithms and Solutions. Springer-Verlag Berlin Heidelberg; 2011. https://doi.org/10.1007/978-3-642-17989-1
  4. Lee KY, Mohd. A E–S. Modern heuristic optimization techniques - Theory and applications to power systems. IEEE Press Series on Power Engineering, John Wiley & Sons, Inc., New Jersey. 2008. https://doi.org/10.1002/9780470225868
  5. Panigrahi BK, Abraham A, Das S. Computational intelligence in power engineering. Vol. 302, Springer; 2010. https://doi.org/10.1007/978-3-642-14013-6
  6. Kritsana T. Development of an efficient calculation method based on evolutionary programming for optimal power flow considering transient and voltage stabilities, Ph. D dissertation, Graduate School of Engineering, Tokyo, December; 2009.
  7. Telang AS, Bedekar PP. Voltage stability constrained optimum power flow - A critical review. The Journal of CPRI. 2016 Jun; 12(2):201–18.
  8. Garver LL. Transmission network estimation using linear programming. IEEE Transactions on PAS. 1970; 89(7):1688–97. https://doi.org/10.1109/TPAS.1970.292825
  9. Rathore C, Roy R, Sharma U, Patel J. Artificial bee colony algorithm based static transmission expansion planning. IEEE Procedure of International Conference on Energy Efficient Technologies for Sustainability; 2013 April. p. 1126–31. https://doi.org/10.1109/ICEETS.2013.6533544
  10. Khardenvis MD, Tembhere SB, Pande VN. Artificial Bee Colony (ABC) algorithm based transmission expansion planning with security constraints. Power Research - A Journal of CPRI. 2018 Jun; 14(1):27–36. https://doi.org/10.33686/pwj.v14i1.142182
  11. Verma A. Transmission network expansion planning. Ph. D thesis, Indian Institute of Technology Delhi, December; 2009.
  12. Dusonchet YP, El-Abiad AH. Transmission planning using discrete dynamic optimization. IEEE Transactions on PAS. 1973; 92(4):1358–71. https://doi.org/10.1109/TPAS.1973.293543
  13. Romero R, Monticelli A. A hierarchical decomposition approach for transmission network expansion planning. IEEE Transactions on Power System. 1994; 9(1):373–80. https://doi.org/10.1109/59.317588
  14. Kim KJ, Park YM, Lee KY. Optimal long term transmission expansion planning based on maximum principle. IEEE Transactions on Power System. 1988; 3(4):1494–501. https://doi.org/10.1109/59.317588
  15. Villasana R, Garver LL, Salon SJ. Transmission network planning using linear programming. IEEE Transactions on PAS. 1985; 104(2):349–56. https://doi.org/10.1109/TPAS.1985.319049
  16. Hashimoto SHM, Romero R, Montovani JRS. Efficient linear programming algorithm for the transmission network expansion planning problem. IET Generation, Transmission & Distribution. 2003; 150(5):536–42. https://doi.org/10.1049/ip-gtd:20030656
  17. Al-Hamouz ZM, Al-Faraz AS. Transmission expansion planning based on a non-linear programming algorithm. Applied Energy.2003; 76:169–177. https://doi.org/10.1016/S0306-2619(03)00060-6
  18. Youssef HK, Ackam R. New transmission planning model. IEEE Transactions on Power System. 1989; 4(2):9–18. https://doi.org/10.1109/59.32451
  19. Oliveira GC, Costa APC, Binato S. Large scale transmission network planning using optimization and heuristic techniques. IEEE Transactions on Power System. 1995; 10(4):1828–34. https://doi.org/10.1109/59.476047
  20. Binato S, Pereira MVF, Granville S. A new benders decomposition approach to solve power Transmission network design problems. IEEE Transactions on Power System. 2001; 16(2):235–40. https://doi.org/10.1109/59.918292
  21. Haffner S, Monticelli A, Garcia A, Mantovani J, Romero R. Branch and bound algorithm for transmission system expansion planning using a transportation model. IET Generation, Transmission & Distribution. 2000; 147(3):149–56. https://doi.org/10.1049/ip-gtd:20000337
  22. Haffner S, Monticelli A, Garcia A, Romero R. Specialised branch-and-bound algorithm for transmission network expansion planning using a transportation model. IET Generation, Transmission & Distribution. 2001; 148(5):482–88. https://doi.org/10.1049/ip-gtd:20010502
  23. Choi J, El-Keib A, Tran T. A fuzzy branch-and-bound based transmission system expansion planning for the highest satisfaction level of the decision maker. IEEE Transactions on Power System. 2005; 20(1):476–84. https://doi.org/10.1109/TPWRS.2004.840446
  24. Sharifnia A, Aashtiani HZ. Transmission network planning: A method for synthesis of minimum cost secure networks. IEEE Transactions on Power Apparatus and Systems. 1985; 104(8):2026—34. https://doi.org/10.1109/TPAS.1985.318777
  25. Levi VA. A new mixed-integer methodology for optimal transmission expansion planning. Electric Power System Research. 1995; 32:227–38. https://doi.org/10.1016/0378-7796(94)00919-U
  26. Bahiense L, Oliveira GC, Pereira M, Granville S. A mixed integer disjunctive model for transmission network expansion. IEEE Transactions on Power System. 2001; 16(3):560–65. https://doi.org/10.1109/59.932295
  27. Alguacil N, Motto AL, Conejo AJ. Transmission expansion planning: A mixed -integer LP approach. IEEE Transactions on Power System. 2003; 18(3):1070–7. https:// doi.org/10.1109/TPWRS.2003.814891
  28. Torre S, Conejo A, Contreras J. Transmission expansion planning in electricity markets. IEEE Transactions on Power System. 2008; 23(1):238–48. https://doi.org/10.1109/TPWRS.2007.913717
  29. Sanchez IG, Romero R, Montavani JRS, Rider M. Transmission expansion planning using the DC model and nonlinear-programming technique. IET Generation, Transmission & Distribution. 2005; 1452(6):763–9. https://doi.org/10.1049/ip-gtd:20050074
  30. Sarhadi S, Amraee T. Robust dynamic network expansion planning considering load uncertainty. Electric Power System Research. 2015; 71:140–50. https://doi.org/10.1016/j.ijepes.2015.02.043
  31. Romero R, Rocha C, Montovani JRS. and Sanchez IG. Constructive Heuristic Algorithm for the DC model in network transmission expansion planning. IET Generation, Transmission & Distribution. 2005; 152(2):277–82. https://doi.org/10.1049/ip-gtd:20041196
  32. Bustamante-Cedeno E, Arora S. Multi-step simultaneous changes constructive Heuristic Algorithm for transmission network expansion planning. Electric Power System Research. 2009; 79:586–94. https://doi.org/10.1016/j.epsr.2008.08.011
  33. Romero R, Rider MJ, Silva I. A metaheuristic to solve the transmission expansion planning. IEEE Transactions on Power System. 2007; 22(4):2289–91. https://doi.org/10.1109/TPWRS.2007.907592
  34. Maghouli P, Hosseini SH, Buygi MO, Shahidehpour M. A multi-objective framework for transmission expansion planning in deregulated environments. IEEE Transactions on Power System. 2009; 24(2):1051–61. https://doi.org/10.1109/TPWRS.2009.2016499
  35. DA Silva EL, Gil HA, Areiza JM. Transmission network expansion planning under improved genetic algorithm. IEEE Transactions on Power System. 2007; 15(3):1168–75. https://doi.org/10.1109/59.871750
  36. Escobar AH, Gallego RA, Romero R. Multistage and Coordinated Planning of the Expansion of Transmission System, IEEE Transactions on Power System, Vol. 19, No. 2, 2004, pp. 735-744 https://doi.org/10.1109/TPWRS.2004.825920
  37. Huang S, Dinavahi V. Multi-group Particle Swarm Optimization for transmission expansion planning solu tion based on LU decomposition. IET Generation, Transmission & Distribution. 2017; 11(6):1434–42. https://doi.org/10.1049/iet-gtd.2016.0923
  38. Kamyab GR, Fotuhi-Firozabad M, Rashidinezad M. A PSO based approach for multi-stage transmission expansion planning in electricity market. Electrical Power and Energy Systems. 2014; 54:91–100. https://doi.org/10.1016/j.ijepes.2013.06.027
  39. Jin Y, Cheng H, Yan J, Zhang L. New discrete method for Particle Swarm Optimization and its application in transmission network expansion planning. Electric Power System Research. 2007; 77:227–33. https://doi.org/10.1016/j.epsr.2006.02.016
  40. Verma A, Panigrahi BK, Bijwe PR. Harmony search algorithm for transmission network expansion planning. IET Generation, Transmission & Distribution. 2010; 4(6):663–73. https://doi.org/10.1049/iet-gtd.2009.0611
  41. Rastgou A, Moshtagh J. Improved harmony search algorithm for transmission expansion planning with adequacysecurity considerations in the deregulated power systems. Electrical Power and Energy Systems. 2014; 60:153–64. https://doi.org/10.1016/j.ijepes.2014.02.036
  42. Shivaie M, Ameli M. An implementation of improved harmony search algorithm for scenario-based transmission expansion planning. Soft Computing. 2013; 18:1615–30. https://doi.org/10.1007/s00500-013-1167-7
  43. Romero R, Gallego RA, Monticelli A. Transmission network expansion planning by simulated annealing. IEEE Transactions on Power System. 1990; 11(1):364–9. https://doi.org/10.1109/59.486119
  44. Gallego RA, Alves AB, Monticelli A, Romero R. Parallel simulated annealing approach applied to long term transmission network expansion planning. IEEE Transactions on Power System. 1997; 12(1):181–8. https://doi.org/10.1109/59.574938
  45. Gallego RA, Romero R, Monticelli AJ. Tabu search algorithm for network synthesis. IEEE Transactions on Power System.2000; 15(2):490–5. https://doi.org/10.1109/59.867130
  46. Silva EL, Ortiz JMA, Oliveira GC, Binato S. Transmission network expansion planning under a Tabu Search approach. IEEE Transactions on Power System. 2001; 16(1):62–8. https://doi.org/10.1109/59.910782
  47. Binato S, Oliveira GC, Araujo JL. A greedy ramdomized adaptive search procedure for transmission expansion planning. IEEE Transactions on Power System. 2001; 16(2):247–53. https://doi.org/10.1109/59.918294
  48. Silva AML, Rezende L, Manso LAF, Recende LC. Reliability worth applied to transmission expansion planning based on ant colony system. Electrical Power and Energy Systems. 2010; 32:1077–84. https://doi.org/10.1016/j.ijepes.2010.06.003
  49. Sum-lm T, Taylor GA, Irving MR, Song YH. Differential evolution algorithm for static and multistage transmission expansion planning. IET Generation, Transmission & Distribution. 2009; 3(4):365–84. https://doi.org/10.1049/ iet-gtd.2008.0446
  50. Georgilakis PS. Market-based transmission expansion planning by improved differential evolution. Electrical Power and Energy Systems. 2010; 32:450–6. https://doi.org/10.1016/j.ijepes.2009.09.019
  51. Alhamrouni I, Ferdavani A, Salem M, Khairuddin A. Transmission expansion planning using AC-based differential evolution algorithm. IET Generation, Transmission & Distribution. 2014; 8(10):1637–44. https://doi.org/10.1049/iet-gtd.2014.0001