Recyclable Polymeric Cable Insulation Materials: A Comprehensive Review
DOI:
https://doi.org/10.33686/pwj.v20i1.1155Keywords:
Recyclable cable insulation, polymeric insulator, recyclable polymers, PP, LDPE, HDPE, XLPEAbstract
Global consumption of electrical cables continues to grow with increasing electrification and infrastructure projects. Cross-Linked Polyethylene (XLPE) has been used as a traditional non-recyclable insulating material for cable insulation for many years due to its good dielectric, mechanical, and thermal properties and economic viability. The volume of waste generated increases daily due to XLPE, which contributes to growing landfill sites. Recyclable insulation of electric cables is significant in promoting environmental sustainability and resource efficiency, akin to substantial advantages over XLPE. Additionally, recyclable materials help conserve non-renewable petroleum resources. This review article presents an overview of recyclable polymeric insulation materials that can be an alternative solution to XLPE. Recyclable polymeric materials like Polypropylene (PP), Low-Density Polyethylene (LDPE), High-Density Polyethylene (HDPE), and polyolefins are briefly discussed in this paper. PP and its blend composites and test results of electrical and mechanical properties are further explained.
Downloads
Metrics
References
Gao Y, Huang X, Min D, Li S, Jiang P. Recyclable dielectric polymer nanocomposites with voltage stabilizer interface: Toward a new generation of high voltage direct current cable insulation. ACS Sustain Chem Eng. 2019; 7(1):513-25 https://doi.org/10.1021/acssuschemeng.8b04070 DOI: https://doi.org/10.1021/acssuschemeng.8b04070
Dyba J. The rise and decline in the United States of impregnated paper-insulated metallic sheathed cable, solid-type. I. The rise. IEEE Elect Insul Mag. 1999; 15(4):136. https://doi.org/10.1109/57.776940 DOI: https://doi.org/10.1109/57.776940
Hosier IL, Cozzarini L, Vaughan AS, Swingler SG. Propylene-based systems for high voltage cable insulation applications. J Phy: Conf Ser. 2009; 183:012015 https://doi.org/10.1088/1742-6596/183/1/012015 DOI: https://doi.org/10.1088/1742-6596/183/1/012015
Andritsch T, Vaughan A, Stevens GC. Novel insulation materials for high voltage cable systems. IEEE Elect Insul Mag. 2017; 33(4):27-33 https://doi.org/10.1109/ MEI.2017.7956630 DOI: https://doi.org/10.1109/MEI.2017.7956630
Yang K, Ren Y, Wu K, Li J, Jing Z, Zhang Z, et al. Enhancing electrical properties of impact polypropylene copolymer for eco-friendly power cable insulation by manipulating the multiphase structure through molten-state annealing. Comp Sci Technol. 2022; 223:109422. https://doi.org/10.1016/j.compscitech.2022.109422 DOI: https://doi.org/10.1016/j.compscitech.2022.109422
Haque SM, Ardila-Rey JA, Umar Y, Mas’ud AA, Muhammad-Sukki F, Jume BH, et al. Application and suitability of polymeric materials as insulators in electrical equipment. Energ. 2021; 14(10):2758. https://doi.org/10.3390/en14102758 DOI: https://doi.org/10.3390/en14102758
Mackevich J, Shah M. Polymer outdoor insulating materials. Part I: Comparison of porcelain and polymer electrical insulation. IEEE Elect Insulat Mag. 1997; 13(3):512 https://doi.org/10.1109/57.591510 DOI: https://doi.org/10.1109/57.591510
Li S, Yu S, Feng Y. Progress in and prospects for electrical insulating materials. High Volt. 2016; 1(3):122-9. https:// doi.org/10.1049/hve.2016.0034 DOI: https://doi.org/10.1049/hve.2016.0034
Li Z, Du B. Polymeric insulation for high-voltage DC extruded cables: challenges and development directions. IEEE Elect Insulat Mag. 2018; 34(6):30-43. https://doi.org/10.1109/MEI.2018.8507715 DOI: https://doi.org/10.1109/MEI.2018.8507715
Amin M, Salman M. Aging of polymeric insulators (an overview). Rev Adv Mater Sci. 2006; 13(2006):93-116.
Nazir MT, Khalid A, Akram S, Mishra P, Kabir II, Yeoh GH, et al. Electrical tracking, erosion and flammability resistance of high voltage outdoor composite insulation: Research, innovation and future outlook. Mat Sci Eng R, Rep. 2023; 156:100757-7 https://doi.org/10.1016/j.mser.2023.100757 DOI: https://doi.org/10.1016/j.mser.2023.100757
Ahmad H, Rodrigue D. Crosslinked polyethylene: A review on the crosslinking techniques, manufacturing methods, applications, and recycling. Pol Eng Sci. 2022; 62(8):2376401. https://doi.org/10.1002/pen.26049 DOI: https://doi.org/10.1002/pen.26049
Adnan M, Abdul‐Malek Z, Lau KY, Tahir M. Polypropylenebased nanocomposites for HVDC cable insulation. IET Nanodielect. 2021; 4(3):84-97 https://doi.org/10.1049/ nde2.12018 DOI: https://doi.org/10.1049/nde2.12018
Liu W, Lu Pien Cheng, Li S. Review of electrical properties for polypropylene based nanocomposite. 2018; 10:221-5. Comp Commun. https://doi.org/10.1016/j.coco.2018.10.007 DOI: https://doi.org/10.1016/j.coco.2018.10.007
Syatirah MN, Muhamad NA, Anwar K, Zakariya MZ, Anuar MNK, Zaidi AAH. A review: Polymer-based insulation material for HVDC cable application. IOP Conf Ser Mat Sci Eng. 2020; 932(1):012064-4. https://doi.org/10.1088/1757899X/932/1/012064 DOI: https://doi.org/10.1088/1757-899X/932/1/012064
David E, Frechette M, Castellon J, Guo M, Helal E. Dielectric properties of various metallic Oxide/LDPE nanocomposites compounded by different techniques. HAL (Le Centre pour la Communication Scientifique Directe). 2017 IEEE Electrical Insulation Conference (EIC), 2017 Jun 11-14; USA: Baltimore, MD; 2017 https://doi.org/10.1109/ EIC.2017.8004675
Ramkumar R, C. Pugazhendhi Sugumaran. Investigation on dielectric properties of HDPE with alumina nano fillers. 2016 IEEE 7th Power India International Conference (PIICON). 2016 Nov 25-27; India: Bikaner; 2016. https:// doi.org/10.1109/POWERI.2016.8077207 DOI: https://doi.org/10.1109/POWERI.2016.8077207
Galli P, Vecellio G. Polyolefins: The most promising largevolume materials for the 21st century. J Polym Sci Part A: Polym Chem. 2003; 42(3):396-415. https://doi.org/10.1002/ pola.10804 DOI: https://doi.org/10.1002/pola.10804
Thue, W.A. (Ed.). (2003). Electrical Power Cable Engineering: Second: Edition, (2nd ed.). CRC Press. https://doi.org/10.1201/9781482287820 DOI: https://doi.org/10.1201/9781482287820
Yuan H, Hu S, Zhou Y, Yuan C, Song W, Shao Q, et al. Enhanced electrical properties of styrene-grafted polypropylene insulation for bulk power transmission HVDC cables. CSEE J Pow Energ Syst. 2024; 10(1):361-70. https://doi.org/10.17775/CSEEJPES.2021.00850 DOI: https://doi.org/10.17775/CSEEJPES.2021.00850
Huang S, Zhou Y, Hu S, Yuan H, Yuan J, Yang C, et al. Comprehensive properties of grafted polypropylene insulation materials for AC/DC distribution power cables. Energies. 2023; 16(12):4701-1. https://doi.org/10.3390/en16124701 DOI: https://doi.org/10.3390/en16124701
Liang Y, Weng L, Zhang W, Li C. Block polypropylene/ styrene-ethylene-butylene-styrene tri-block copolymer blends for recyclable HVDC cable insulation. Mat Res Exp. 2020; 7(8):085301. https://doi.org/10.1088/2053-1591/abab42 DOI: https://doi.org/10.1088/2053-1591/abab42
Zhang P, Zhang Y, Wang X, Yang J, Han W. Effect of acetylated SEBS/PP for potential HVDC cable insulation. Mat. 2021; 14(7):1596 https://doi.org/10.3390/ma14071596 PMid:33805877 PMCid:PMC8037448 DOI: https://doi.org/10.3390/ma14071596
Zhou Y, Yuan C, Li Q, Wang Q, He J. Recyclable insulation material for HVDC cables in Global Energy Interconnection. Direct Open Acc J. 2018.
Zhang C, Jun-Wei Zha, Yan HD, Li WK, Wen YQ, Dang ZM. Effects of trap density on space charge suppression of block polypropylene/AI2O3 composite under high temperature. IEEE Tran Dielect Elect Insul. 2018; 25(4):1293-9 https://doi.org/10.1109/TDEI.2018.007111 DOI: https://doi.org/10.1109/TDEI.2018.007111
Jun‐Wei Zha, Cheng Q, Zhai J, Bian X, Chen G, Dang Z. Integrated multifunctional properties of polypropylene composites by employing three‐dimensional flower‐like MgO with hierarchical surface morphology. IET Nanodielect. 2021; 4(1):27-37 https://doi.org/10.1049/nde2.12006 DOI: https://doi.org/10.1049/nde2.12006
Hu S, Zhou Y, Yuan C, Wang W, Hu J, Li Q, et al. Surface‐modification effect of MgO nanoparticles on the electrical properties of polypropylene nanocomposite. High Volt. 2020; 5(3):249-55. https://doi.org/10.1049/hve.2019.0159 DOI: https://doi.org/10.1049/hve.2019.0159
Chi X, Cheng L, Liu W, Zhang X, Li S. Characterization of polypropylene modified by blending elastomer and nano-silica. Mat. 2018; 11(8):1321 https://doi.org/10.3390/ma11081321 PMid:30061550 PMCid:PMC6117909. DOI: https://doi.org/10.3390/ma11081321
Gao M, Yang J, Zhao H, He H, Hu M, Xie S. Preparation methods of polypropylene/nano-silica/styrene-ethylenebutylene-styrene composite and its effect on electrical properties. Polym. 2019; 11(5):797-7. https://doi.org/10.3390/polym11050797 PMid:31060238 PMCid:PMC6572525. DOI: https://doi.org/10.3390/polym11050797