Development of a Tape Winding Mechanism for HTS Power Cables

Authors

  • Isaac de Souza Indian Institute of Technology, Kharagpur – 721302, West Bengal
  • Ankit Anand Indian Institute of Technology, Kharagpur – 721302, West Bengal
  • Abhay Singh Gour Indian Institute of Technology, Kharagpur – 721302, West Bengal
  • Vutukuru Vasudeva Rao Indian Institute of Technology, Kharagpur – 721302, West Bengal

DOI:

https://doi.org/10.33686/pwj.v18i2.1104

Keywords:

HTS Power Cables, HTS Tapes, Pitch Angle, Pitch Length, Tape Winding Mechanism

Abstract

Manufacturing of HTS power cables requires winding the HTS tapes helically around a former. These HTS tapes are costly, and delicate and require sophisticated winding machinery which is expensive. In this paper, an in-house economic mechanism for converting a conventional lathe machine to a Tape Winding Mechanism (TWM) is discussed in detail. In addition to the developed prototype, the technical issues and challenges encountered during the development of TWM are listed. The developed TWM was instrumental in successfully winding 10 HTS tapes simultaneously around a tin-coated braided copper former of 19 mm diameter with a pitch length of 210 mm for a continuous length of 5 m HTS cable. The recommendation of modifying any existing cable winding machine to TWM is also discussed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-03-15

How to Cite

de Souza, I. ., Anand, A. ., Singh Gour, A., & Vasudeva Rao, V. . (2023). Development of a Tape Winding Mechanism for HTS Power Cables. Power Research - A Journal of CPRI, 18(2), 149–155. https://doi.org/10.33686/pwj.v18i2.1104

References

Yumura H, Ashibe Y, Itoh H, Ohya M, Watanabe M, Masuda T, Weber CS. Phase II of the Albany HTS cable project. IEEE Transactions on Applied Superconductivity. 2009; 19(3):1698-701. https://doi.org/10.1109/TASC.2009. 2017865 DOI: https://doi.org/10.1109/TASC.2009.2017865

Masuda T, Yumura H, Watanabe M, Takigawa H, Ashibe Y, Suzawa C, Ito H, Hirose M, Sato K, Isojima S Weber C. Fabrication and installation results for Albany HTS cable. IEEE Transactions on Applied Superconductivity. 2007; 17(2):1648-51. https://doi.org/10.1109/TASC.2007.898122 DOI: https://doi.org/10.1109/TASC.2007.898122

Kim DW, Jang, HM Lee CH, Kim JH, Ha CW, Kwon YH, Kim DW, Cho JW. Development of the 22.9-kV class HTS power cable in LG cable. IEEE Transactions on Applied Superconductivity. 2005; 15(2):1723-26. https://doi.org/10.1109/TASC.2005.849266 DOI: https://doi.org/10.1109/TASC.2005.849266

Anand A, Nayek S, Gour AS, Rao VV. IV characterization of HTS tape under tensile stress using cryogenic UTM along with FEM analysis. Indian Journal of Cryogenics. 2020; 45(1):130-33. https://doi.org/10.5958/2349-2120.2020.00 022.9 DOI: https://doi.org/10.5958/2349-2120.2020.00022.9

Gerhold J, Tanaka T. Cryogenic electrical insulation of superconducting power transmission lines: Transfer of experience learned from metal superconductors to high critical temperature superconductors. Cryogenics. 1998; 38(11):1173-88. https://doi.org/10.1016/S0011-2275(98)00105-2 DOI: https://doi.org/10.1016/S0011-2275(98)00105-2

Yu T, Shi Y, He X, Kang C, Deng B. Modeling and optimization of interlaminar bond strength for composite tape winding process. Journal of Reinforced Plastics and Composites. 2017; 36(8):579-92. https://doi.org/10.1177/0731684416685415 DOI: https://doi.org/10.1177/0731684416685415

Costello GA. Theory of wire rope. Springer Science & Business Media; 1997. https://doi.org/10.1007/978-1-4612- 1970-5