Fast Charging Behaviour of High-Power Li-Ion Cell at Different Temperatures and Effect on Capacity and Internal Resistance

##plugins.themes.academic_pro.article.main##

N. Srilekha
Kuldeep Rana
Pradeep Kumar
Shashank K. Ravanikar
P. Chandrashekar

Abstract

Lithium-Ion Batteries (LIBs), which have already proven to be a reliable power source in consumer electronics devices, are being considered a viable option for powering Electric Vehicles (EVs). Fast charging of EVs is one of the key challenges that is preventing a wide range of adoption of EVs. In this study, a lithium-ion cell with Lithium Titanium Oxide (LTO)-lithium Nickel Manganese Cobalt oxide (NMC) chemistry of 30 Ah has been used to study the fast charging capabilities at different temperatures and C-rates. Various parameters such as temperature rise, nominal and exponential capacity, and internal resistance have been studied for different C-rates (C/3, 1C, and 2C) and at different temperatures (25 °C, 40 °C, and -10 °C). The ΔV values along with the charge and discharge characteristics have been analyzed, and the experimental results are compared with the simulation results.

##plugins.themes.academic_pro.article.details##

How to Cite
Srilekha, N. ., Rana, K. ., Kumar, P. ., Ravanikar, S. K. ., & Chandrashekar, P. . (2023). Fast Charging Behaviour of High-Power Li-Ion Cell at Different Temperatures and Effect on Capacity and Internal Resistance. Power Research - A Journal of CPRI, 18(2), 139–147. https://doi.org/10.33686/pwj.v18i2.1103

References

  1. Zhang YC, Briat O, Deletage J-Y, et al. Performance quantification of latest generation Li-ion batteries in wide temperature range. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society; 2017. p. 7666- 7671. https://doi.org/10.1109/IECON.2017.8217343 DOI: https://doi.org/10.1109/IECON.2017.8217343
  2. Andwari AM, Pesiridis A, Rajoo S, et al. A review of Battery Electric Vehicle technology and readiness levels. Renewable and Sustainable Energy Reviews. 2017; 78. https://doi.org/10.1016/j.rser.2017.03.138 DOI: https://doi.org/10.1016/j.rser.2017.03.138
  3. Un-Noor F, Padmanaban S, et al. A comprehensive study of key Electric Vehicle (EV) components, technologies, challenges, impacts, and future direction of development. Energies. 2017; 10(8):1217. https://doi.org/10.3390/en10081217 DOI: https://doi.org/10.3390/en10081217
  4. Hannan MA, Hoque MM, Hussain, et al. State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. IEEE Access. 2018; 6:19362-19378. https://doi.org/10.1109/ ACCESS.2018.2817655 DOI: https://doi.org/10.1109/ACCESS.2018.2817655
  5. Yu M, Hynan P, et al. Current Li-ion battery technologies in electric vehicles and opportunities for advancements. Energies. 2017; 12(6):1074. https://doi.org/10.3390/en12061074 DOI: https://doi.org/10.3390/en12061074
  6. Katari JS, Sneha R, Vinayaka KU, et al. A concise review of different standards for performance testing of lithium-ion batteries for electric vehicle applications. IEEE International Conference on Power Systems Technology (POWERCON); 2020. p. 1-6. https://doi.org/10.1109/POWERCON48463.2020.9230560 DOI: https://doi.org/10.1109/POWERCON48463.2020.9230560
  7. Bank T, Feldmann J, Klamor S, et al. Extensive aging analysis of high-power lithium titanate oxide batteries: Impact of the passive electrode effect. Journal of Power Sources. 2020; 473: 228566. ISSN0378-7753. https://doi.org/10.1016/j. jpowsour.2020.228566 DOI: https://doi.org/10.1016/j.jpowsour.2020.228566
  8. Stan A, Swierczyński M, Stroe D, et al. Lithium ion battery chemistries from renewable energy storage to automotive and back-up power applications - An overview. International Conference on Optimization of Electrical and Electronic Equipment (OPTIM); 2014. p. 713-720. https://doi.org/10.1109/OPTIM.2014.6850936 DOI: https://doi.org/10.1109/OPTIM.2014.6850936
  9. Foad HG, Jaguemont J, Goutam S, et al. Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges. Applied Energy. 2019; 251:113343. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2019.113343 DOI: https://doi.org/10.1016/j.apenergy.2019.113343
  10. Chen Z, Belharouak I, Sun, et al. Titanium-based anode materials for safe lithium-ion batteries. Adv Funct Mater. 2013; 23:959-969. https://doi.org/10.1002/adfm.201200698 DOI: https://doi.org/10.1002/adfm.201200698
  11. Rana K, Kim SD, Ahn JH. Additive-free thick graphene film as an anode material for flexible lithium-ion batteries. Nanoscale. 2015; 7(16):7065-7071. https://doi.org/10.1039/C6TA09059A DOI: https://doi.org/10.1039/C4NR06082B
  12. Wang Y, Chu Z, Feng X, et al. Overcharge durability of Li4Ti5O12 based lithium-ion batteries at low temperature. Journal of Energy Storage. 2018; 19:302-310. ISSN-2352- 152X. https://doi.org/10.1016/j.est.2018.08.012 DOI: https://doi.org/10.1016/j.est.2018.08.012
  13. Nikolian A, Jaguemont J, de Hoog J, et al. Complete celllevel lithium-ion electrical ECM model for different chemistries (NMC, LFP, LTO) and temperatures (−5 °C to 45 °C) - Optimized modelling techniques. International Journal of Electrical Power and Energy Systems. 2018; 98:133-146. ISSN-0142-0615. https://doi.org/10.1016/j. ijepes.2017.11.031 DOI: https://doi.org/10.1016/j.ijepes.2017.11.031
  14. Gauthier N, Courreges C, Demeaux J, et al. Probing the in-depth distribution of organic/inorganic molecular species within the SEI of LTO/NMC and LTO/LMO batteries: A complementary ToF-SIMS and XPS study. Applied Surface Science. 2020; 501:144266. ISSN-0169-4332. https://doi.org/10.1016/j.apsusc.2019.144266. https://doi.org/10.1016/j.apsusc.2019.144266 DOI: https://doi.org/10.1016/j.apsusc.2019.144266
  15. Barai A, Uddin K, Dubarry M, et al. A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells. Progress in Energy and Combustion Science. 2019; 72:1-31. ISSN 0360-1285. https://doi.org/10.1016/j.pecs.2019.01.001 DOI: https://doi.org/10.1016/j.pecs.2019.01.001
  16. Gao Y, Zhang X, Cheng QB, et al. Classification and review of the charging strategies for commercial lithium-ion batteries. IEEE Access, 2019; 7:43511-43524. https://doi.org/10.1109/ACCESS.2019.2906117 DOI: https://doi.org/10.1109/ACCESS.2019.2906117
  17. Zeng X, Li M, Abd, et al. Commercialization of Lithium Battery Technologies for Electric Vehicles. Adv Energy Mater. 2019, 9:1900161. https://doi.org/10.1002/aenm.201900161 DOI: https://doi.org/10.1002/aenm.201900161
  18. Abdel-Monem M, Trad K, Omar N, et al. Influence analysis of static and dynamic fast-charging current profiles on ageing performance of commercial lithium-ion batteries. Energy. 2017; 120:179-191. ISSN 0360-5442. https://doi.org/10.1016/j.energy.2016.12.110 DOI: https://doi.org/10.1016/j.energy.2016.12.110
  19. Liu Z, Gao Y, Chen H, et al. Thermal performance of lithium titanate oxide anode based battery module under high discharge rates. World Electric Vehicle Journal. 2021; 12(3):158. https://doi.org/10.3390/wevj12030158 DOI: https://doi.org/10.3390/wevj12030158
  20. Cicconi P, Landi D, Germani M, Thermal analysis and simulation of a Li-ion battery pack for a lightweight commercial EV. Applied Energy. 2017; 192:159-177. ISSN 0306-2619. https://doi.org/10.1016/j.apenergy.2017.02.008 DOI: https://doi.org/10.1016/j.apenergy.2017.02.008
  21. Ansean D, Gonzalez M, Viera JC, et al. Electric vehicle li-ion battery evaluation based on internal resistance analysis. IEEE Vehicle Power and Propulsion Conference (VPPC); 2014. p. 1-6. https://doi.org/10.1109/VPPC.2014.7007058 DOI: https://doi.org/10.1109/VPPC.2014.7007058
  22. Belt JR, Ho CD, Motloch CG, et al. A capacity and power fade study of Li-ion cells during life cycle testing. Journal of Power Sources. 2003; 123(2):241-246. ISSN 0378-7753, https://doi.org/10.1016/S0378-7753(03)00537-8 DOI: https://doi.org/10.1016/S0378-7753(03)00537-8
  23. Cittanti D, Ferraris A, Airale A, et al. Modeling Li-ion batteries for automotive application: A trade-off between accuracy and complexity. International Conference of Electrical and Electronic Technologies for Automotive; 2017. p. 1-8. https://doi.org/10.23919/EETA.2017.7993213 DOI: https://doi.org/10.23919/EETA.2017.7993213
  24. Nemes R, Ciornei S, Ruba M, Hedesiu, H, et al. Modeling and simulation of first-order Li-Ion battery cell with experimental validation. 8th International Conference on Modern Power Systems (MPS); 2019. p. 1-6. https://doi.org/10.1109/MPS.2019.8759769 DOI: https://doi.org/10.1109/MPS.2019.8759769
  25. Naha A, Han S, Agarwal S. et al. An incremental voltage difference based technique for online state of health estimation of Li-ion batteries. Sci Rep. 2020; 10:9526. https://doi.org/10.1038/s41598-020-66424-9 PMid:32533023 PMCid:PMC7293255 DOI: https://doi.org/10.1038/s41598-020-66424-9
  26. Samadani E, Farhad S, Panchal, et al. Modeling and evaluation of li-ion battery performance based on the electric vehicle field tests. SAE Technical Papers; 2014. https://doi.org/10.4271/2014-01-1848 DOI: https://doi.org/10.4271/2014-01-1848
  27. Mushini JCD, Rana K, Aspalli MS. Analysis of open circuit voltage and state of charge of high power lithium ion battery. International Journal of Power Electronics and Drive Systems (IJPEDS). 2022 Jun; 13(2):657-664. ISSN:2088- 8694. https://doi.org/10.11591/ijpeds.v13.i2.pp657-664 DOI: https://doi.org/10.11591/ijpeds.v13.i2.pp657-664
  28. Tornheim A, O’Hanlon DC. What do coulombic efficiency and capacity retention truly measure? a deep dive into cyclable lithium inventory, limitation type, and redox side reactions. J Electrochem Soc. 2020; 167:110520 https://doi.org/10.1149/1945-7111/ab9ee8 DOI: https://doi.org/10.1149/1945-7111/ab9ee8
  29. Liu Y, Zhang L, Jiang J, et al. A data-driven learning-based continuous-time estimation and simulation method for energy efficiency and coulombic efficiency of lithium ion batteries. Energies. 2017; 10:597. https://doi.org/10.3390/en10050597 DOI: https://doi.org/10.3390/en10050597
  30. Yang F, Zhao Y, Tsui K-L, Bae, et al. A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries. Energy. 2018; 145. https://doi.org/10.1016/j.energy.2017.12.144 DOI: https://doi.org/10.1016/j.energy.2017.12.144
  31. Feng F, Lu, R, Zhu, et al. A combined state of charge estimation method for lithium-ion batteries used in a wide ambient temperature range. Energies. 2014; 7:3004-3032. https://doi.org/10.3390/en7053004 DOI: https://doi.org/10.3390/en7053004
  32. Qiu C, He G, Shi W, et al. The polarization characteristics of lithium-ion batteries under cyclic charge and discharge. J Solid State Electrochem. 2019; 23:1887-1902. https://doi.org/10.1007/s10008-019-04282-w DOI: https://doi.org/10.1007/s10008-019-04282-w
  33. Liu Z, Wang C, Guo X, et al. Thermal characteristics of ultrahigh power density lithium-ion battery. Journal of Power Sources. 2021; 506:230205. ISSN-0378-7753, https://doi.org/10.1016/j.jpowsour.2021.230205 DOI: https://doi.org/10.1016/j.jpowsour.2021.230205