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Mixed H2/H∞∞∞∞∞ Control of Continuous-time Singularly Perturbed
System–state Feedback Computations
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This study brings out the scheme for the design of a mixed H
2
/H∞ based feedback controller for

a continuous-time singularly perturbed system using state feedback computations. The mixed
H

2
/H∞ control law was derived using the auxiliary cost minimisation approach and the feedback

controller was formulated for a linear time invariant lower and higher order continuous-time
singularly perturbed systems by solving iteratively coupled Riccati equations. The H∞-controller
based on the mixed sensitivity approach and the Linear Quadratic Gaussian (LQG) controller
were derived for the same system. The time responses for unit step input and robustness properties
such as Gain and Phase margin were studied by formulating mixed H

2
/H∞, H∞ and LQG systems.
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1.0 INTRODUCTION

The linear state feedback regulators are designed for singularly perturbed systems based on Linear
Quadratic Regulation (LQR) by minimising quadratic performance index as discussed in the
literature [1]-[3]. These regulators could not guarantee good performance against measurement
noise disturbances acting on the plant. The pioneering work in H∞ optimisation was initiated by
G Zames [4], where the disturbances of partially unknown dynamics and the noise information
could be modelled and the concept was used to obtain the optimal feedback controller, which
minimises the  H∞-norm of the weighted sensitivity function, while achieving the internal stability.
The control theory studied in [5]-[8], provides the controller which is robust against uncertainties
and worst-case disturbances normally encountered in the plants, its major disadvantage being that
the  order of the  controller is many times higher than the plant’s order.  In spite of the fundamental
difference between LQG design and H∞ theory, a significant connection was discovered in [9], in
which it was observed that a modified algebraic Riccati equation developed for parameter robust
full state feedback control could yield controllers satisfying H∞ disturbance attenuation bounds.
This relation was further explored in [10], where the state-space approach developed solved the
problem of finding among all state feedback controllers that minimise an H

2
 performance measure,

one that also satisfies an H∞-norm bound.

The standard H
2
 and H∞ optimal control problems are treated as separate problems, but in a

unified state-space framework as discussed in [11]. This motivated the later researchers to continue
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this work to find a single problem formulation that has the standard H
2
 and H∞ theories as special

cases. The mixed H
2
/H∞ problem was also studied in the form of Constrained Optimal Control

Problem (COCP), where an admissible controller (K) was determined for the plant (G), which
minimises the 2-norm of the transfer function [Tz

0
w

0
, where w

0
 is input, z

0
 is output] while

satisfying the H∞-constraint [||Tz
1
w

1
||∞ < γ , where w

1
 is input, z

1
 is output] for a given

γ > 0. Among all the admissible controllers, K provides robust stability, the COCP is to find a
controller that minimises the variance of output z

0
 (with ∆ = 0), when the input w

0
 is zero mean

unit variance white noise. However, there is no analytical solution to this problem, but some
attempts have been made to solve modified versions of the optimisation problem by Mustafa and
Glover [12].

In the mixed H
2
/H∞ control, the quadratic performance and disturbance attenuation criteria are tied

in an auxiliary minimisation problem, which provides a controller of fixed order and achieves
worst-case disturbance attenuation but sacrificing quadratic performance to some extent. The
Bernstein-Haddad [13] has formulated auxiliary cost mixed H

2
/H∞ problem, where the exogenous

input vector and the nominal performance were measured with an upper bound to the 2-norm of
the transfer matrix. The necessary and suffcient conditions for optimal controllers were given
interms of coupled Riccati equations. This approach is exploited here for the design of the mixed
H

2
/H∞ controller for singularly perturbed systems taking advantage of the reduced order model

structure. These controllers can provide both robust stability (via closed-loop H∞-norm bound)
and nominal performance (via a closed-loop LQG cost bound or H

2
-norm bound). In this study,

the mixed H
2
/H∞ based state feedback controller was derived for continuous time SPS by solving

coupled Riccati equations. The procedure developed drastically, reduces the computational
complexities involved in solving the coupled Riccati equations. The mixed H

2
/H∞ control law thus

derived has been applied to continuous-time singularly perturbed systems. The coupled Riccati
equations are solved iteratively using continuation method [13]. The H∞-controller and the LQG
controller were also formulated for the same system. The time responses of the closed-loop mixed
H

2
/H∞ LQG and H∞ system for unit step input and robustness properties such as Gain and Phase

Margin were analysed.

2.0 FORMULATION OF MIXED H2/H∞∞∞∞∞ 
CONTROL PROBLEM

The H
2
/H∞ 

control theory described in [13] is presented in this section for a continuous time
system with a singularly perturbed structure for a linear state variable feedback (LSVF). The basic
structure of the feedback system in the form of a block diagram is shown in Fig. 1, where ‘G’ is
the generalised plant and K is the controller. The disturbance ‘w’ is a zero mean white noise, the
‘z’ is the output to be controlled;  and ‘y’ is the measured variable and ‘u’ is the control input.

FIG. 1 LINEAR TIME INVARIANT FEEDBACK SYSTEM
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The linear time invariant singularly perturbed system ‘G’ can be described by the equation:

(1)

with

The controlled output z(t) and the measured output y(t) respectively are:

(2)

(3)

where w(t) is the disturbance input with E[w(t)w’ (t)] = I, (A,B
1
) is stabilisable and (C

1
,A) is

detectable, where:

with a linear state variable feedback (LSVF) control law:

(4)

(i) the closed-loop system (1)-(4), viz.,

(5)

(6)

� is asymptotically stable, where:

(ii) the transfer function from w(t) to z(t),

(7)

satisfies the H∞ constraint:

(8)
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and

(iii) the performance functional

(9)

is minimised, where E{.} stands for expected value of {.}

Now, with

R
1
:= S

1
’S

1
   R

2
:= S

2
’S

2
   R

12
 := S

1
’S

2

and S
1
 further partitioned as S

1
 = [S

11
  S

12
]

Equation (9) is simplified using equation (4) [u = Kx(t)]

(10)

where:

3.0 DESIGN OF MIXED H2/H∞ CONTROLLER

The aim of the mixed H
2
/H∞ 

problem is to minimise the H
2
 performance index J(K) equation (10)

subject to the H∞-bound ||Tzw||∞ ≤  γ for the robust stability. There is no analytical solution to this
problem and hence the original problem is relaxed in an auxiliary minimisation problem. In [11],
an attempt is made to develop state feedback controllers that minimise the H

2
-norm of a closed-

loop transfer matrix and also obtain necessary and sufficient conditions for the existence of a
controller that also satisfies a prescribed H∞-norm. When these conditions are satisfied, the solution
of the problem is also a global solution to the constrained optimisation problem of minimising an
H

2
-norm performance measure subject to an H∞- constraint. Another suboptimal approach known

as the auxiliary minimisation problem was introduced by Bernstein and Haddad in [13]. Here, to
enforce the H∞- constraint, an upper-bound for the H

2
 criteria is derived. The minimisation of the

upper bound shows that the enforcement of an H-infinity disturbance attenuation constraint leads
directly to an increase in the H

2
 performance bound. The present study follows the above suboptimal

approach for formulating a LSVF controller for a singularly perturbed system. To enforce the
disturbance attenuation constraint (8), the Lyapunov equation is replaced with an Algebraic Riccati
Equation (ARE), the solution of which over-bounds the closed-loop steady state covariance, in
view of the following theorem.

Theorem 1: Let K = [K
1
  K

2
] be given and assume that ≥Q∈Rn x n, a non-negative definite matrix-

satisfying:

(11)

then,

(a) (A
~
, B

~
) is stabilisable iff A

~
 is asymptotically stable. In this case
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(b) ||Tzw||∞ ≤ γ and (c) Q
~
 ≤ Q, consequently (d) J(K)≤J(K,Q), where J(K,Q)= trace[QR˜].

This theorem shows that if a positive semi-definite solution exists for Q, then

(12)

leads to an upper-bound on the H
2
-performance criteria. The following theorem guarantees

the existence of a unique nominal positive semi-definite solution to (equation 12), when the
H-infinity constraint is satisfied.

Theorem 2 : Suppose that K ∈ Rm1 x n is given, which leads to an asymptotically stable A
~
 and the

disturbance attenuation constraint ||Tzw||∞ ≤γ is satisfied. Then, there exists a unique non-negative
definite solution for Q satisfying:

(13)

and such that  is asymptotically stable and further the solution obtained is minimal.

3.1 Auxiliary minimisation of mixed H2/H∞ problem

The auxiliary minimisation problem is described for the state feedback case. For the given system,
the objective is to determine the feedback gain K, which minimises the performance functional
J(K,Q)= tr(QR

~
) subject to the constraint ||Tzw||∞ ≤ γ. The equation (13) is the algebraic Riccati

equation for a dual system in which the roles of input and output matrices are interchanged if
compared with the following continuous time Riccati equation:

0 = QA + A’Q – QLQ + C’C;  where L = BR–1B’

So the structure of Q can be shown to be of the form given in [1]:

(14)

which is different from what is given in H
2
 optimisation problem. In view of Theorem1, if a

positive semi-definite solution exists to equation (12), then equation (13) becomes an upper-
bound  to the H

2
 performance functional and simultaneously the H-infinity disturbance attenuation

constraint (8) is satisfied. Instead of directly minimising (10), the idea is to minimise an auxiliary
cost (13) for a fixed controller structure. In this way the original H

2
/H∞ design criterion is relaxed.

Following the procedure laid down in [15], the auxiliary cost is minimised by forming the
Lagrangian without any loss of generality:

(15)

where  and ‘P’ is the positive semi-definite Lagrangian multiplier. The
optimal conditions are: ∂L / ∂Q = 0 and ∂L / ∂K = 0 which respectively result as follows:
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(16)

This is the full-order Lagrangian multiplier equation. Here (A
~
 + QR

~
∞) is assumed to be

stable.

3.2 Derivation of control law

In order to design the mixed H
2
/H∞ controller for a continuous time singularly perturbed system,

the three coupled Riccati equations are solved iteratively by determining the feedback control gain
matrix K. The full-order controller gain equation is obtained by substituting R

~
, A

~
 and C

~
, we have:

(17)

For the central controller,

(18)

This is the full-order gain equation. The coupled equations (13), (16) and (18) may be solved
iteratively for Q, P and the desired control K in the full-order case. Here, the Q equation can be
solved independently as it is free of P and K. The P equation, however, depends on Q and the gain
equation depends on both Q and P. So, P and K equations are to be solved simultaneously.

On the other hand if we assume that D
1

’ [C1  D1] = [0  I], then K may be singled out as:

(19)

By substituting above K, the Riccati and Lagrangian equations obtained are:

(20)

(21)

In the full-order case, we can solve simultaneously the coupled equations (20) and (21) for Q and
P, as they are independent of K, and finally the full-order mixed H

2
/H-infinity feedback gain K

can be computed as it is a function of both Q and P.
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4.0 RESPONSE AND ROBUSTNESS MEASURES OF MIXED H2/H∞, LQG AND H∞
CONTROLLERS

The design of control systems almost invariably involves trade-offs among competing objectives.
It is often the case that the controller is required to meet several different performance and
robustness goals, and all of these cannot be met simultaneously. For example, it is intuitively clear
that to obtain robust stability margin, it is likely that the performance criterion of the control
system needs to be compromised. In this section the mixed H

2
/H∞, LQG and H∞ controllers were

formulated for the second and fourth order linear time invariant continuous time singularly perturbed
systems described below.

(22)

(23)

where 

Description of systems

The second and fourth order systems considered are:

Where A is the system matrix, B
1
 is the disturbance matrix, B

2
 is the control matrix and C

1
 is the

measurement matrix.

4.1 Formulation of mixed H2/H∞ controllers

The control input is defined as u = K x(t), where K is a linear state variable feedback control that
satisfies: (i) that the closed-loop system is asymptotically stable (ii) the closed-loop transfer
function satisfies the constraint ||T(s)||∞ ≤ γ, where γ is a constant (iii) the performance functional
J(K)=lim

 t➞∞ 
{[x(t)+u(t)]’[x(t)+u(t)]} is to be minimised. To find out the solution to this problem,

the coupled matrix Riccati equations (19), (20) and (21) obtained in the previous section using
state feedback computations are solved sequentially. The idea is to exploit the fact that for large
γ, the problem is approximated by LQG, which provides a reliable starting solution. The continuation
parameter γ is then successively decreased until the desired value of γ is achieved, where Q and
P will be positive definite. Using the Robust Control System tool box of MATLAB software, the
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equations for Q, P and K are solved iteratively to obtain the appropriate control law. The simplified
sequence of continuation algorithm used is: (a) initially neglect γ and find the initial values of Q
and P (b) set γ to some high value (c) determine the Q and P using equations (23)-(24) (d) check
the positive definiteness of Q and P (e) if Q and P are positive definite, compute the feedback
gain K (e) else, decrease γ and repeat steps (c)-(e). The value of constraint constants (γ)
obtained for the second and third order systems respectively are 1.15 and 1.56. The full-order
mixed H

2
/H∞ controller feedback gains obtained are K (second) = [–0.2864 –0.07848] and

K (fourth) = [–0.9866 –0.7848 –0.6740 –0.0165]. With this feedback, the closed-loop system
matrices  formulated are:

The robustness properties are studied by formulating an open-loop system [K (sI –A)–1B] using
mixed H

2
/H∞ control law K derived for the above systems.

4.2 Formulation of H-infinity controllers

The H-infinity optimisation has become an effective design approach to tackle the problem of
stability and performance robustness of a variety of plants. In this section, the H∞ controller based
on the mixed sensitivity approach is synthesised for the same second and fourth order plants
described in equations (22)-(23). The optimisation problem is solved by selecting the weights to
obtain better performance and robustness properties. The weight selection is similar to classical
single loop shaping, namely specifying sufficient gain at low frequency for performance, good
roll-off at high frequency to attenuate noise and attempting to achieve low enough roll-off rates
at crossover to ensure good phase margin. The multi-variable case is slightly more complicated
as each plant input may affect several outputs. This requires careful plant scaling and bandwidth
selection. The open-loop transfer functions of the system formulated are:

Here, the objective is to find a stabilising controller K(s) for the plant G(s) to satisfy the following
H∞ inequality.

Where S(s) is the sensitivity function of the closed-loop system. The behaviour of this function
with frequency indicates the affect of disturbance on the output of the system. The smaller the S(s)
is, the less disturbance affect on the output. There are a variety of approaches both experimental
[14] and numerical [15] discussed in the literature for the selection of weighting functions, so that
the resulting controller can satisfy the desired design specifications. The weighting function
W

1
 (s) incorporated intentionally and is chosen to be large at those frequencies where the disturbance

is more. The T(s) is the complementary sensitivity transfer function of the closed-loop system
from the external input to the output. It plays an important role in characterising the robustness
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of the closed-loop system against plant perturbations. If T is smaller, then the system is more
robust. The weighting function W

3
 (s) is incorporated to shape the plant uncertainties. The smaller

the ||TW
3
(s)||∞ is, the larger the perturbations that may be admitted without making the feedback

system unstable.

To solve the mixed sensitivity problem, the plant G(s) is augmented with weighting functions
W

1
 (s) and W

3
 (s) penalising the error and output signals, so that the closed-loop transfer function

matrix is the weighted mixed sensitivity.

i.e. 

Here the transfer functions G(s), W1(s) and W3(s) must be proper. Now, the objective is to
solve the small gain infinity norm robust control problem, i.e. to find a stabilising controller K(s)
for a system G(s) such that the closed-loop transfer function T

zw
 is minimised. This problem is

solved for the constraint constant γ = 1. The plant G(s) is augmented with suitable loop shaping
filters, so that the infinity norm concept provides direct shaping of closed-loop singular values.
The robust mixed sensitivity based H-infinity controllers obtained for second and fourth order
systems are:

This is done by using an optimisation procedure to provide internal stability, whilst simultaneously
forcing the singular values of appropriate closed-loop operators like sensitivity function
S = (I + G(s)K(s))–1and the complementary sensitivity function T = GK(I + G(s)K(s))–1 to lie below
the specified bound over the desired frequency range. The weighting functions considered forces
the ‘S’ to be small at low frequencies and DC, and also ensures that the reference signals are
tracked adequately in the steady state. The high weighting on complementary sensitivity function
T at high frequencies prevents the controller BW from becoming too high. The S(s) and T(s)
obtained here are:

4.3 The Linear Quadratic Gaussian (LQG) Controllers

The LQG controller design methodology enables a controller to be synthesised which is optimal
with respect to a specified quadratic performance index. Furthermore, this theory takes into
account the presence of white noise disturbances acting on the system. In many control problems,
it is straight forward to translate the required performance objective into a problem of minimising
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a quadratic cost functional. The LQG controller is formulated for the continuous time singularly
perturbed system described in equation (23)-(24) using Robust Control System tool box in MATLAB
software. The format of the system under consideration is:

x
.
(t) = Ax(t) + B

1
u (t) + B

2 
w (t)

y(t) = C
1
 x(t) + Du(t) + v(t)

Here, w(t) is the plant noise and v(t) is the measurement noise. These are sequences of independent
gaussian vectors with zero mean values and covariances W and V, which minimise the quadratic
cost and the covariance between the plant and measurement noise. Here the objective is to compute
an optimal controller K(s) to stabilise the above described plant and minimise the following
quadratic cost function:

The plant noise and the measurement noise have the following correlation function:

The final controller K(s) have the following form,

which can be realised as full state feedback and Kalman filter i.e.,

The LQG controllers obtained for the second and fourth order systems are:

The simulated time response for unit step input of the closed-loop mixed H
2
/H∞, LQG and

H-infinity systems derived above are shown in the Figs. 2 and 3. The robustness properties such
as the Gain and Phase margin of the open-loop transfer function of the above systems are shown
in Table 1. The results shown enumerates that the mixed H

2
/H∞ has a better steady state response

as compared to LQG and H-infinity and also the order of the controller is lower with respect to
the H-infinity controllers derived.
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5.0 CONCLUSION

In this paper, a design procedure for a mixed H
2
/H∞ 

optimal state feedback controller for a
singularly perturbed system has been proposed. During the formulation and simulation of the
mixed H

2
/H∞ 

control law, an interesting feature observed was that, there exists a critical value of
constraint constant below which the solution of mixed H

2
/H∞ controller could not be computed.

The controllers obtained in this study are not unique and they depend largely on the choice of
frequency dependent weighting functions and the quadratic weights. Usually the selection of these
weighting functions is guided by the requirements of specific design application.
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