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Day-ahead Electricity Price Forecasting in Victoria Electricity Market Using
Support Vector Machine-based Model
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In this paper, Support Vector Machine (SVM), a new machine learning technique based model
to forecast price profile in a single settlement real-time electricity market has been presented.
The proposed model has been trained and tested on data from the Victoria Electricity Market
(VEM) to forecast the Regional Reference Price (RRP). The selection of input variables has
been performed using correlation analysis, and in order to take advantage of the homogeneity
of the time series, forty-eight separate SVMs have been used to predict the next-day price profile,
with each SVM forecasting price for each trading interval. Forecasting performance of the
proposed model has been compared with (i) an heuristic technique, (ii) a naïve technique, (iii) Multiple
Linear Regression (MLR) model, and (iv) Neural Network (NN) model. Forecasting results show
that the SVM model possesses better forecasting abilities than the other models and can be used by
the participants to respond properly as it predicts the price before the closing of the window for
submission of initial bids.
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1.0 INTRODUCTION

An electricity market is a system for effecting
the purchase and sale of electricity using supply
and demand to set the price. In an open
market, power companies and consumers submit
their generation or consumption bids and
corresponding prices to the Market Operator
(MO), who will then conduct a market-clearing
process (Fig. 1), to determine the Market
Clearing Price (MCP) for the corresponding time
interval [1]. Trading in electricity markets is
different from trading in other commodities,
because electricity is by nature difficult to store
and has to be available on demand. In addition,
the laws of physics determine how electricity
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flows through an electricity network. A
consequence of the complexity of a wholesale
electricity market, is extremely high price
volatility at times of peak demand and
supply shortages [2]. Competitive markets
have meant that while generation companies
can cope with demand uncertainty by the
financial techniques of risk management (short-
term basis) as well as by the expansion planning
(long-term basis), on the other hand customers
find an opportunity to safeguard their interests
in the form of demand side management and
financial hedging [3]. But, the various financial
derivatives used to hedge exposure to the often
abnormally high and rapidly mean-reverting
electricity prices require an understanding
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of the pricing process and the ability to
accurately estimate future price volatility [4].
If the MCP can be predicted accurately, market
participants can reduce their risks and optimise
their interests.

Several approaches have been proposed in the
recent years for this problem, such as linear
time series models like MLR [5], Dynamic
Regression and Transfer Function [6], and
Autoregressive Integrated Moving Average
(ARIMA) [7]. Artificial Intelligence (AI)
based models like Artificial Neural Network
(ANN) [8-9], and Fuzzy Logic Models (FLM)
[10] and hybrid neuro-fuzzy models [11]
have been reported. The focus of this paper
is the development of a day-ahead price
forecasting model in a real-time electricity
market using a new machine learning technique
for data classification and regression based
on recent advances in statistical learning
theory [12-13]. Little work has been done in
the area of electricity price forecasting using
SVM; whereas, the method has already proved
its capability for load forecasting [14].

Usually there are two types of electricity
markets: day-ahead market and intra-day or
real-time market [4]. Real-time electricity
markets are highly unpredictable and therefore
the proposed model has been applied to
real-time single settlement Victoria Electricity
Market (VEM). In this work, forty-eight
SVMs have been used to fit the training
data and predicting the price profile of the next
day in VEM. Forecasting performance of
the proposed SVM model has been compared
with (i) heuristic technique, (ii) naïve technique,
(iii) MLR model and (iv) NN model.
Comparison of forecasting performance
clearly shows that, for the same set of input
variables, SVM has the potential to outperform
the other models and hence can be utilised
as a reliable forecaster by the participants,
as the results of its prediction are available
before the initial window of the submission of
bids gets closed.

2.0 SUPPORT VECTOR MACHINE (SVM)

SVM is a relatively new promising method for
learning separating functions in pattern
recognition tasks and for performing functional
estimation in regression problems and hence is
very attractive for many real-world forecasting
problems like electricity price forecasting. This
learning technique has been introduced in the
framework of Structural Risk Minimisation
(SRM) and in the theory of VC (Vapnic-
Chervonenkis) bounds. More precisely, instead
of minimising the absolute value of an error or
of an error square, the SVM performs SRM. A
detailed account of SVM has been given in
[12-15] and a brief introduction of the support
vector regression (SVR) method has been
presented in this section.

Consider the set of training data ( ){ }N
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corresponding output. The support vector
regression solves a constrained non-linear
optimisation problem of minimising a quadratic
cost functional.
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where, X
i
 is mapped to a higher dimensional

space by the function φ. ξ
i
 and ξ

i
* are called

slack variables, ξ
i
* 

 
is the upper and ξ

i
 is the

lower training error subject to the ε-insensitivity
loss function or tube φω +− ))(( bXy T . ω is
the weight vector and b is the bias. The
parameters, which control regression quality, are
the cost of error C, the width of the tube ε, and
the mapping function φ. Mapping function φ is
used to convert a non-linearly separable problem
in input space into a linearly separable problem
in feature space.

The constraints of (1) imply that it is attempted
to put most of the data X

i
 in the tube

φω +− ))(( bXy T . If X
i
 is in the tube, the

loss is zero. If X
i
 is not in the tube, there is an

error ξ
i
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or ξ
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 which is minimised in the cost

functional. SVR avoids underfitting and
overfitting the training data by minimising the
training error ∑ =

+N

i iiC
1

* )( ξξ as well as the
regularisation term ( ) ωωT

2
1 .  This is in

accordance with the principle of SRM, where
training error (empirical risk) and the
regularisation term (VC dimension), both are
minimised simultaneously. For traditional least-
square regression, ε is always zero and data are
not mapped into higher dimensional spaces.
Hence, SVR is a more general and flexible
treatment of regression problem.

Since φ may map X
i
 to a very high or infinite

dimensional space, numerical optimisation in a
high dimensional space suffers from the curse
of dimensionality. Instead of solving ω for (1)
in high dimension, the dual problem of (1) is
solved. The dual problem is cast entirely in terms
of its training data.
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where, K
ij
 = φ (X

i
)T.φ (X

i
). However, this inner

product may be expensive to compute because
φ (X) has too many elements. Hence, the “kernel
trick” is applied to do the mapping implicitly.
That is, to employ some special forms which
are inner products in higher space, but can be
calculated in the original space. Some examples
of kernel functions are polynomial kernel

j
T

i XXX .()(.)( = γφφ  and the Radial
Basis Function (RBF) kernel function

)(.)( φφ j
T

i XX = . These are inner

products in very high dimensional space but can
be computed efficiently.

3.0 TEST SYSTEM AND PRICE
INFLUENCING VARIABLES

The National Electricity Market (NEM) is a
wholesale market for electricity supply in the
six regions of Australia [16]. Wholesale trading
in electricity is conducted as a real-time spot
market where demand and supply are
instantaneously matched in real-time through a
centrally coordinated economic dispatch process.
A dispatch price is determined every five
minutes, and six dispatch prices are averaged
every half-hour to determine the spot price,
known as System Marginal Price (SMP). There
are 48 trading intervals of half-hour duration in
each trading day in the NEM. There is a separate
SMP for each trading interval in each of the
NEM’s six regions known as the Regional
Reference Price (RRP). The RRP for Victoria
region has been predicted in this study. For each
trading day D, participants need to submit their
bids on day D-1 before 12:00 pm. Following
the definition of historical volatility [6], the daily
logarithmic return y

t
 for all market prices can

be calculated as:

ln()ln( −−= ttt ppy (3)

where, p
t
 is the price information at time t, and

p
t-48

 is the price information 48 intervals before
time t. Historical price volatility (σ) is defined
as the standard deviation of y

t
 over a specified

period of time. The yearly volatility of RRP and
statistical properties of RRP and Total Market
Demand (TMD) has been presented in Table 1.
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Input variables for the price forecasting model
have been selected after performing correlation
analysis [17]. The list of price influencing
variables have been given in Table 2, which has
been used for building the model in this work.
The following variables have been considered:
(i) historical RRP values (ii) TMD (iii) air
temperature (iv) dew point temperature
(v) humidity (vi) wind speed and (vii) crude oil
prices. When correlation analysis was performed
after taking half-hourly series of these variables,
no conclusion could be drawn due to the highly
volatile nature of RRP. Therefore, a correlation
analysis of daily averages was performed and
has been presented in Table 2. Some linear
correlation between RRP and its past values and
TMD can be observed. The correlation
coefficient (ρ) between TMD and air temperature
has been found to be –0.37. Correlation of RRP
with wind speed and crude oil prices is
insignificant.

4.0 PRICE FORECASTING MODELS FOR
VEM

The methodologies of price forecasting models
compared in this work have been explained as
follows:

4.1 Heuristic model (M1)

For price forecasting, heuristic model assumes
a strong and linear relationship between
price and load, whose trends and levels
repeat daily, weekly and seasonally. The
expected price predicted by this method can
be defined as:

coDtD RRPRRP , −= (4)

tDRRP ,  is the expected price for forecast day D
at time t.

tcompDRRP ,−  is the price at time t  of the
comparable day of forecast day D.

tDDEM ,  is the forecast load for day D at time t.

tcompDDEM ,−  is the load at time t  of the
comparable day of forecast day D.

Comparable day has been assumed as the
corresponding day of the previous week i.e.
7 days before D-day. This has been taken
to capture the weekly demand cycle. Load
demand, on day D-2, at the corresponding
trading interval has been taken as the forecast
load DEM

D,t
.

4.2 Naïve method (M2)

For price forecasting, naive method is based on
the characteristics of the price curve, following
a daily and weekly pattern. So price during a
particular half-hour of a trading day (RRP

D,t
)

may be assumed to be equal to the last week’s
price during the same half-hour of the
corresponding weekday (RRP

D-7,t
).

DtD RRPRRP ,7, −= (5)

2002 2003 2004 2002 2003 2004

Mean 33.20 23.10 30.04 5427.2 5560.6 5644.5

Minimum -228 0.90 -329.9 3760.4 3736 3820.7

Maximum 4906.1 6444.2 3240.9 7581.4 8524.1 7956.7

Skewness 27.8 53.4 29.7 0.11 0.22 0.07

Kurtosis 871.3 3163.2 1144.8 2.28 2.59 2.18

σ 0.46 0.40 0.48 - - -

TABLE 1

YEAR-WISE STATISTICAL PROPERTIES
OF RRP AND TMD (VEM)

Statistical
Property

RRP ($) TMD (MW)

1. RRP (D-n), n = 2, 3, 7, 14 0.49, 0.24, 0.04, 0.18

2. TMD (D-n), n = 0, 2, 7, 14 0.27, 0.16, 0.15, 0.09

3. Air temperature (D-2) -0.37

4. Dew point temperature (D-2) -0.17

5. Humidity (D-2) 0.26

6. Wind speed (D-2) -0.035

7. Crude oil (D-2) 0.045

D - day under consideration, n - number of lagging days

TABLE 2

CORRELATION ANALYSIS OF D-DAY’S
PRICE WITH OTHER VARIABLES

IN VEM

Sl.
No. Variable

ρρρρρ (VEM, 03-01-2002
to 05-31-2002)
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4.3 MLR model (M3)

This model is based on the MLR approach [17].
Since modelling each half-hour of the day
separately presents better forecasting properties
than the whole time-series [3]; the complete data
set has been divided into 48 time-series, each
one corresponding to half-hour of the day.
Regression coefficients, for each of the 48 time-
series for the predicted day (D-day), have been
calculated using the data of the past fifteen
weeks. The length of data period from fifteen
weeks to seven weeks was tried and optimum
results were obtained using the data of fifteen
weeks. Initially, all input variables given in Table
2 were considered; but the best results were
obtained using demand variables and its lags
only. The variable set given in Table 3 has been
used for final prediction.

4.4 SVM model (M4)

This model has been implemented using
MATLAB 7.0. The steps for forecasting
procedure are:

Step 1: All variables, as given in Table 4, have
been selected as input variables.

Step 2: Complete data set has been divided into
48 separate series, each corresponding to a half-
hour of the day. All inputs X

i
 and output y

i
 are

scaled to be in the range [-1, 1]. For each series,
separate SVM models were used for prediction.
Overall, 48 SVMs were used for prediction.

Step 3:  After model selection and the
preparation of data set, SVM model was built
for price forecasting. When training an SVM
model, there are some parameters to choose as

they may influence the performance of an SVM
model. These are: (i) cost of error C (ii) the
width of the ε-insensitive tube (iii) the mapping
function or kernel function φ and (iv) number
of days of training data for model estimation.

In this work, for each series, the past 105 days,
data has been used for SVM model training and
estimating the parameters for D-day. For the
parameter ε, this was fixed at 0.01 after a few
iterations. The Gaussian Radial Basis Function
(RBF) kernel was used as a mapping function.
The RBF function is of the form:

(6)

where, σ is a parameter associated with the RBF
function, which has to be tuned. σ and C were
set at 17.62 and 65 respectively for training the
SVM model and the subsequent prediction.

5.0 RESULT ANALYSIS AND
PERFORMANCE EVALUATION

Mean absolute percentage error (MAPE) has
been adopted to assess and compare the
performance of the models. MAPE can be
defined as:

(7)

where, X
t
 is the actual value of the predicted

variable and X
f
 is the forecasted value. N is the

number of observations used for analysis.
N = 48 and 1440, for Daily MAPE (DMAPE)
and monthly MAPE calculations respectively.

TABLE 3

INPUT VARIABLE SET FOR MLR
MODEL (M3)

S. No. Variable Time lag

1. Constant -

2. TMD (d-2, t)

3. TMD (d-7, t)

4. Daily Average TMD (d-2)

TABLE 4

FINAL VARIABLE SET FOR SVM
MODEL (M4)

Variable Time lag

TMD D-2

RRP D-2

Daily average TMD D-2, D-7, D-14

Daily average RRP D-2, D-7, D-14

Daily average air temperature D-2

Daily average dew point temperature D-2
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5.1 Comparison of forecasting performance
of the models

The price forecasting has been performed
using data from period March 18, 2003
to June 30, 2004. Forecasting test period
is from July 1, 2003 to June 30, 2004. Average
monthly MAPE comparison along with monthly
volatility has been presented in Table 5. It can
be observed from the tables that performance of
M4 is better than the other three models. Overall
MAPE performance of M4 is better than M1,
M2 and M3 by 37.36%, 37.67% and 32.05%
respectively.

M4 outperforms M1, M2 and M3 during all
twelve months. A comparison of DMAPE
for 366 days test period has been presented
in Table 6, where the count of days having
DMAPE below a certain range is given. For
199 days, DMAPE of M4 is below 20%, which
is better than the other three models. For only
34 days, DMAPE of M4 is above 50%, which
is lowest among all the four models. The
maximum DMAPE is also lowest in the case
of M4. During the whole test period, volatility
was very high. Especially during January
and February 2004, volatility was 0.53 and
0.75 respectively. This may be due to
complex bidding strategies adopted by the
participants. Even then, the performance of M4
is reasonable.

5.2 Comparison of forecasting performance
M3 with other studies in VEM

A comparison of the forecasting performance
of M4 with other studies of price forecasting
for VEM was also performed. The other reported
works for price forecasting in VEM are based
on NN models [8-9]. Authors of [9] have
applied NN model for one-time interval
(half-hour) ahead price forecasting. In [8],
the NN model has been used for one to six-
hour ahead RRP forecasting. In [8], a Euclidian
norm with weighted factors was used to find
days similar to that of the forecasted day. Then,
a gradient based NN model was trained with

the data of these similar days to predict the price
profile using recursive technique. However, the
price profile consisted of twenty-four points with
each point equal to an average of two half-hourly
prices. The MAPE of six-hour ahead price
forecasting during September 2003 was 20.03%
and during first week of September, 2003 was
25.77%. It is clear from Table 5 that MAPE of
M4 during the month of September 2003 was
14.79% for a forecasting horizon of 24-hours.
During the first week of September 2003 test
period; MAPE of M4 was observed as 6.33%,
which is better than results presented in [8]. So
model M3 has the potential to outperform other
AI based models proposed for VEM. Moreover
available models [8-9], can predict RRP after
bidding is closed; whereas, the proposed model
M3 predicts RRP well before closing of the bids.

TABLE 5

MONTHLY MAPE COMPARISON
IN VEM

Month M1 M2 M3 M4 Volatility

July, 2003 38.04 40.02 40.55 16.77 0.37

August, 2003 38.13 39.01 40.21 18.25 0.33

September, 2003 16.88 16.02 32.52 14.79 0.27

October, 2003 31.66 30.86 29.78 20.47 0.34

November, 2003 21.49 17.92 19.49 17.67 0.29

December, 2003 35.78 43.10 32.20 30.66 0.40

January, 2004 55.13 54.75 41.66 36.28 0.53

February, 2004 113.6 115.4 59.89 48.40 0.75

March, 2004 28.05 26.19 46.01 25.26 0.38

April, 2004 36.46 39.03 37.66 24.99 0.40

May, 2004 28.21 25.69 29.01 20.56 0.36

June, 2004 32.98 30.84 30.19 25.17 0.47

Average 39.70 39.90 36.60 24.87 0.41

TABLE 6

DMAPE EVALUATION
FOR THE TEST PERIOD

DMAPE Range M1 M2 M3 M4

< 20% 124 146 86 199

< 30% 228 232 203 283

< 40% 277 288 255 312

< 50% 304 303 287 332

> 50% 62 63 79 34

Max. DMAPE 796.28 852.20 193.21 157.43

Min. DMAPE 4.91 4.48 7.93 5.48
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5.3 Validation of Model M4

A reasonable forecasting technique can be
properly validated if (i) its performance is better
than the well-accepted methods; (ii) the
comparison is based on the performance of test
samples; (iii) the size of the test samples are
adequate. In this work, M1, M2 and M3 have
been selected as benchmarks and it has been
observed that M4 performs better than the other
three. Although models M1 and M2 look simple,
they have the potential to outperform more
complicated models. So these are tough
benchmarks to beat in a highly volatile
electricity market like VEM. The forecasting
accuracy of M4 is better than the available NN
models in the literature as well. All comparison
has been made on the basis of a 366 days test
sample and is sufficient.

In order to understand weaknesses and strengths
of the proposed model, the ability of the model
M4 to forecast turning points has been shown
graphically for one day and four different weeks
during four seasons in Figs. 2 to 6. From
Fig. 2, it is clear that M4 has the potential to
follow the price curve quite closely. During the
considered four week period, large daily
variations in RRP can be observed. RRP varies
from 10$ to 140$ in Fig. 3, 5$ to 70$ in Fig. 4,
10$ to 42$ in Fig. 5 and 3$ to 120$ in Fig. 6.
The main strength of the model is that it predicts
the trend very well and even predicts the small
peaks accurately. This is clearly evident from
Figs. 2 to 6. The main limitation of the model
M3 is that it cannot predict the large peaks
accurately, in fact due to this shortcoming,
prediction quality is not very high. But it has
been pointed out in [18] that VEM is a highly
volatile market and prediction in real-time single
settlement electricity markets is very difficult.
In this case, the overall performance of M4 is
better than M1, M2, M3 and previously reported
NN based models. It can be observed from
Table 5 that the performance of M3 is least
affected by volatility, whereas performance of
M1 and M2 suffers the most during the highly
volatile periods. The proposed method M4 is

easier to implement, it utilises publicly available
information only and provides forecasted results
before bidding time on D-1 day. Thus it can be
utilised by the participants for all practical
purposes to respond properly.

6.0 CONCLUSION

In this work, a new approach for price
forecasting using SVM has been proposed and
implemented on data from VEM, which is a
highly volatile electricity market. The problem
has been framed as 48 separate half-hourly
equations. Correlation analysis of price with its
influencing variables has been performed. One
of the important contributions of this paper is
the case study of VEM by applying SVM for a
sufficient forecasting period and comparison
with four other techniques. The proposed model
(M4) has been compared with heuristic method
(M1), naïve method (M2) and MLR model (M3)
over a period of one year. Forecasting accuracy
has also been compared with the previously
reported NN model. Model M4 outperforms M1,
M2 and M3 by more than 30%. By analysing
the forecasting performance of all the five
models, it can be concluded that the proposed
SVM based model (M4) provides forecast with
better accuracy and can easily find real-world
price forecasting application as it predicts price
before the submission of bids and utilises
publicly available information only.

FIG. 2 ACTUAL AND PREDICTED PRICE CURVES FOR JULY
5, 2003
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