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system operation and planning. Some of these are 
i) optimal dispatch of both real and reactive power 
ii) transmission expansion planning iii) corrective 
rescheduling for security enhancement of power 
system network etc. However, the objective of 
OPF in restructured electricity market has further 
added the maximization of social welfare in 
addition to minimizing generating units’ emissions 
etc. Many classical optimization techniques have 
been tried to solve OPF problem, among them 
the most commonly used techniques are linear 
programming, quadratic programming, Newton 
based techniques, interior point methods etc. 
Although many of the classical techniques have 
excellent convergence characteristics and have 
been in use for years but they suffer from the 
drawbacks like convergence into local minima. 
The performance of some of the conventional 
optimization methods is found to be poor even 
when it has to handle both continuous and discrete 

1.0 INTRODUCTION

Optimal Power Flow (OPF) was fi rst discussed by 
Carpentier in 1962 and gradually became one of 
the most important tool for power system studies 
over last few decades [1–4]. The OPF generally 
deals with fi nding new steady operating point of 
the complex power system where the minimization 
of generation costs, emissions, network losses, 
voltage deviations etc may be considered as 
objectives while the network must operate within 
its safe paradigm. Basically, the OPF is a highly 
nonlinear, nonconvex optimization problem 
consisting of both continuous and discrete control 
variables. Continuous control variables such as 
generators real power output, voltages etc and 
discrete control variables such as transformer 
tap settings, switched capacitors are adjusted to 
obtain the optimal operating point of the power 
system. OPF fi nds its application mainly in power 
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control variables simultaneously [5]. The rapid 
developments of non conventional optimization 
techniques, such as evolutionary algorithms (EA), 
artifi cial intelligence etc and their successful use in 
power system research have been the motivating 
factors for many researchers for quite sometimes 
now [5–9]. 

With the increase in environmental awareness and 
its regulations, today’s power system operation 
has become more complex with multiple goals. 
The use of evolutionary algorithm’s (EAs) for 
solving optimization tasks with multiple objective 
has become very popular in the last few years. 
A multi-objective optimization problem (MOP) 
differs from a single objective optimization 
problem, because it contains several objectives 
that require optimization. For multi-objective 
problems with several (possibly confl icting) 
objectives, there is usually no single optimal 
solution. Therefore, the decision maker (DM) is 
required to select a compromised solution among 
many feasible solutions.

In some of the research works, multiobjective 
optimization problem was converted into a 
single objective problem by linear combination 
of different objectives as a weighted sum 
[10–13]. The important aspect of this method 
is that a set of non-inferior (or Pareto-optimal) 
solutions can be obtained by varying the weights. 
There is no rational basis for determining adequate 
weights and the objective function so formed 
may lose signifi cance due to combining non 
commensurable objectives. Further, this method 
can not be used to fi nd Pareto optimal solutions 
in problems having non-convex Pareto optimal 
front. To avoid this diffi culty, the ∈-constraint 
method for multiobjective optimization was 
reported [14].

Over the past decade, a number of multiobjective 
evolutionary algorithms (MOEAs) have been 
suggested [15–20]. The potential of EAs for 
solving multi-objective optimization problem was 
hinted as early as the late 1960’s by Rosenberg. But 
the implementation of MOEA was delayed until 
mid 1980’s. Since EA work with a population of 
solutions, it is possible for EA to provide a diverge 
set of solutions for a multi-criterion environment. 

Moreover, EAs are less susceptible to the shape 
or continuity of Pareto front.

Deb et al. [19] have proposed nondominated 
sorting GA (NSGA) for solving multiobjective 
problems. NSGA is a popular non-domination 
based genetic algorithm for multiobjective 
optimization. It is a very effective algorithm 
but has been criticized for its computational 
complexity, lack of elitism and for choosing the 
optimal parameter value for sharing parameter, 
δshare. An improved version of it, NSGA-II was 
developed by Deb et al. [20], which has a better 
sorting algorithm, incorporates elitism and no 
sharing parameter needs to be chosen and it has 
been demonstrated to be among the most effi cient 
algorithm for multiobjective optimization on a 
number of benchmark problems. Recent works on 
power generation economics using multiobjective 
optimization methods [22,23] and the relevance 
of OPFas a utility tool in the new era of power 
system operation[24] have been the motivating 
factor in this work. Very few works are reported 
on the performance of NSGA-II on highly 
nonlinear multiobjective power system problems. 
In view of the above, the main objective of the 
present work is to develop a program based on 
NSGA-II and study its performance in solving 
multi-objective optimal power fl ow problem of 
various IEEE test systems. 

2.0 PROBLEM FORMULATION

2.1 Mathematical Formulation 

In the present work, the multi-objective optimal 
power fl ow has been formulated to minimize certain 
objectives subject to satisfying some network 
constraints. The multi-objective OPF problem can 
be written mathematically as follows: 

Minimize, 

( )

( )

( )

1

k

f x, u
.

F x,u
.

f x,u

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 k = 1,2…no of objectives.

Subject to 

g(x, u) = 0  (1)
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h(x, u) ≤ 0

Where F(x,u) is the multi-valued objective 
function. x and u are vector of dependent 
variables and control variables respectively. 
g(x, u) and  are equality h(x,u)  and inequality 
equations associated with the problem. 

For example, the dependent variables represent 
slack bus power, bus voltage angles, load bus 
voltage magnitudes etc whereas PV bus voltage 
magnitude, generated power, tap position of tap 
changers, shunt compensators etc are represented 
by the control variables. 

2.2 Objective Function

2.2.1 Fuel Cost

The objective of fuel cost minimization is done 
by allocating best network settings that minimizes 
overall fuel cost function while satisfying other 
network constraints. The generator cost curve 
which is a function of power output, can be 
represented by the following equations without and 
with considering valve point loading respectively. 

( ) ( )
NG
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j j j j j

j 1
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2.2.2 Emission

The objective of fuel emission dispatch is done 
by allocating the best setting that minimizes the 
overall atmospheric emission. The total ton/hr 
emission E(P) of atmospheric pollutants such 
as sulphur oxides SO2 and nitrogen oxides NOX 
caused by burning of fuel in thermal units can be 
expressed as: 

( ) ( )
NG

3
j j j j j

j 1

E P P P
=

= α + β + γ∑   (4)  

2.2.3 Power Loss

The objective of real power loss minimization 
is done by selecting the best combination of 

variables, which minimizes the total real power 
loss of the network simultaneously satisfying all 
the network constraints. Mathematically it can be 
expressed as: 

m

loss j
j 1

P loss
=

= ∑   (5)

2.2.4 Voltage Deviation

As voltage magnitude of load busses is one of 
the most important criterion to maintain power 
system stability and reliability issues, the sum of 
voltage deviations of all the load busses must be 
kept as small as possible. Mathematically it can 
be expressed as:

( )
NL

ref
j j

j 1

VD V V
=

= −∑  (6)

The jth load bus reference voltage is generally 
considered as 1.0 p.u.  

2. 3 CONSTRAINTS

2.3.1 Power balance constraints

The total power generated by the units must be 
equal to the sum of total load demand and total 
real power loss in the transmission lines. Hence 
the equality constraint equations are:

( )
( )

NB ik i k ik
Gi Di i k

k 1
i k

G cos B
P P V V

sin=

⎧ ⎫θ −θ +⎪ ⎪− − ∑ ⎨ ⎬
θ −θ⎪ ⎪⎩ ⎭

=0 
  (7)
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G sin - -
Q - Q - V V = 0

B cos -

⎧ ⎫θ θ⎪ ⎪Σ ⎨ ⎬
θ θ⎪ ⎪⎩ ⎭

    i=1,2,..NB  (8)

2.2.3 Generation capacity constraints

The real power output of generating units must be 
restricted within their respective lower and upper 
bounds (inequality constraints) as follows:

min max
Gj Gj GjP P P≤ ≤        |j=1,2,…NG| (9)
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2.3.3 Other constraints

The other operational constraints involved in 
OPF problem are generator reactive power, 
voltage magnitudes of all generators, transformer 
tap positions, VAR compensator position, bus 
voltage magnitudes of all load buses etc. These 
constraints can be written as follows:

min max
Gj Gj GJQ Q Q≤ ≤  j=1,2,...nPV

min max
j j jV V V≤ ≤  j=1,2,…nPV

min max
i i iT T V≤ ≤  i=1,2,…nT

min max
ci ci ciQ Q Q≤ ≤  i=1,2,..nC

min max
j j jV V V≤ ≤  j=1,2,…nPQ

     (10)

3.0 NSGA-II IMPLEMENTATION TO 
MOOPF PROBLEM

In principle, NSGA-II initializes by generating 
a random set of initial population of size p. 
Once the population is initialized, it is sorted 
based on non-domination into Pareto optimal 
fronts. For sorting the population based on their 
non-domination level, the fi tness values are 
calculated by running the power fl ow program. 
In this paper, Newton Raphson power fl ow 
algorithm is used to minimize the real and 
reactive power mismatches. In order to reduce 
the computational complexity, the NSGA-II 
uses a special book-keeping strategy for a faster 
and effi cient comparison of the solutions. Each 
solution is assigned a fi tness (rank) equal to its 
non-domination level. The algorithm uses binary 
tournament selection, recombination and mutation 
operators to create offspring population of size p. 
Since elitism is important for the effectiveness 
of the search, the NSGA-II introduces elitism 
by including all population from current and 
previous generations and a combined population 
of size 2p is formed. The population is sorted 

again based on their non-domination and a new 
population of size p is selected. The diversity 
among the non-dominated solution is introduced 
by crowding distance comparison procedure, 
which is used during tournament selection 
and population reduction phase. The crowding 
distance measures how close an individual is to 
its neighbours and a larger crowding distance 
will result in better diversity in the population. 
From the selected population, a new offspring 
is created and the procedure is continued for 
subsequent generations until the stopping criteria 
specifi ed by number of generations are met.

Recently, the application of NSGA-II has been 
reported by Baskar et al. for solving power 
system generation expansion planning problem 
[25] and reactive power dispatch problem [26] 
respectively. In both of the reported works, the 
performance of NSGA-II algorithm has been 
modifi ed either by using controlled elitism 
or dynamic crowding distance etc. However, 
investigation can be carried out in fi nding the 
performance of simple NSGA-II in solving 
highly nonlinear multiobjective optimal power 
fl ow problem. Hence, application of NSGA-II
has been reported in this paper formulating multi-
objective optimal power fl ow for different sizes 
of electric power system network.    

3.1 Initial Population

An initial population, P of size N×n, where N is 
the number of individuals (chromosomes) and n 
is the number of control variables (continuous 
and discrete) is created choosing the values 
randomly from within their bounds. Generators 
real power output Pij and voltage magnitudes |Vij| 
are considered as Tij continuous control variables 
whereas tap position of tapped transformers 
and switching position of shunt capacitors are 
considered as discrete control variables. Initially 
gene values of each individual are determined by 
setting its value randomly. For  example, the real 
power output of jth generator of ith individual is 
found randomly such that its value lies between 
its lower and upper limits, i.e, ( )min max

ij j jP U P ,P∼ .
The process is repeated to fi nd the gene values of 
all other individuals (chromosomes). 
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3.2 Nondominated Sort

After the initial population P is generated, a 
non-dominated sorting of the population is done 
into different fronts. For each solution p, two 
attributes are found:

1. Domination count np, the number of 
solutions, which dominate the solution p, 
and

2. Sp, a set of solutions, which are dominated by 
solution p. 

All solutions in the fi rst non-dominated front will 
have their domination count np as zero. Now, for 
each solution p with np=0, each member (q ∈ Sp) 
is found and its domination count is reduced 
by one. In doing so, if for any member the 
domination count becomes zero, it (q) is included 
in a separate set Q. The members of this set Q 
belong to the second non-dominated front. This 
process continues until all fronts are identifi ed. 
Figure 1 depicts the solutions classifi ed into 
fronts after the method is applied.

Front 1 solutions
(Non - dominated)

Front 2 solutions
(dominated)

O
bj

ec
tiv

e 
1

Objective 2

Front 3 solutions
(dominated)

FIG. 1  SOLUTIONS ARE STORED ON NON 
DOMINATION AND DOMINATION BASIS

3.3 Density Estimation

To get an estimate of the density of solutions 
surrounding a particular solution in the population, 
the average distance of two points on either side 
of the point under consideration along each of 
the objectives is calculated. 

A cuboid is formed by taking the nearest solutions 
on either side. The quantity idistance serves as an 
estimate of the perimeter of the cuboid and is 

called the crowding distance. Figure 2 depicts 
the crowding distance.

FIG. 2  DISTANCE OF NEIGHBORS OF POINT I 
CONSIDERING BOTH THE OBJECTIVES

The computation of crowding-distance requires 
sorting the population according to each 
objective function value in ascending order of 
magnitude. Then, for each objective function, 
the solutions with smallest and largest function 
values are assigned an infi nite distance value 
for the objective under consideration. All other 
solutions having function value intermediate 
between minimum and maximum values 
mentioned above are assigned a distance value 
equal to the absolute normalized difference in the 
function values of two adjacent solutions. This 
calculation is continued with other objective 
functions. The overall crowding-distance value 
for each solution is calculated as the sum of 
individual distance values corresponding to each 
objective. Each objective function is normalized 
before calculating the crowding distance. 

3.4 Selection Algorithm

Non-dominated sorting based selection is used for 
selecting the population for the next generation. 
Initially, a combined population Rt=Pt∪Qt is 
formed, where Pt is the parent population and 
Qt is the new population obtained after applying 
genetic operators. The population Rt is of size 
2N. The population Rt is sorted according to non-
domination. Then crowding distance is calculated 
for each individual. Since N chromosomes are 
selected for next generation (i.e. Pt+1) from 2N 
chromosomes of combined population Rt, elitism 
is ensured. Now, solutions belonging to the non-
dominated set F1 are the best solutions in the 
combined population and must be emphasized 
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more than any other solution during selection. 
While selecting N solutions from fronts starting 
with F1 the following conditions are considered 
within a front. 

1. There may be more than one chromosome 
having zero crowding distance and/or 

2. Different solutions having a crowding 
distance less than ∈, a threshold value.

Condition 1 is an indication of duplicate 
chromosomes and condition 2 where chromo
somes are having a crowding distance less than 
∈ is an indication of close proximity of solutions 
which, if accepted, will result into cluster 
of solutions which is undesired. Algorithm 
selects only one solution in case of duplicate 
chromosomes and rejects chromosomes having 
crowding distance less than ∈. If the number of 
solutions selected from front F1 is less than N, the 
remaining (y) members of the population Pt+1 are 
chosen from subsequent nondominated fronts in 
the order of their ranking. Thus, solutions from 
the set F2 are chosen next, followed by solutions 
from the set F3 and so on till N number of solutions 
is selected. While selecting, the solutions are 
accepted from best to worst front (F1,F2,…..), 
but with non acceptance of all solutions of any 
particular front, there is a chance of not getting all 
N chromosomes even from all the fronts (having 
2N chromosomes). In such case, population is 
fi lled up by duplicating the accepted solutions. 
The new population Pt+1 of size N is now used 
for selection, crossover, and mutation to create a 
new population Qt+1 of size N.

3.5 Creation of Offspring

Here, real-coded GA (SBX-Simulated Binary 
Crossover) is used for crossover and Polynomial 
mutation is used [21] for mutation for offspring 
generation. The SBX operator works with two 
parent solutions and creates two offspring. The 
two offspring created are symmetric about the 
parent solutions are as follows: 

( ) ( )1,k k 1,k k 2,k
1c 1 p 1 p
2

⎡ ⎤= − β + + β⎣ ⎦  (11)

( ) ( )2,x k 1,k k 2,k
1c 1 P 1 p
2

⎡ ⎤= + β + − β⎣ ⎦  (12)

where ci,k is ith child’s kth gene. βk is the is a 
random number as below:

( ) ( )

( )
( )

1
1

1
1

u 2u or
1u

2 1 u

η+

η+

β =

β =
⎡ − ⎤⎣ ⎦

where u is a uniform random number between 
limits (0,1). Any one of β (u) is selected 
randomly.

Polynomial Mutation: The probability of creating 
a solution near to the parent is higher than the 
probability of creating one distant from it. The 
shape of the probability distribution is directly 
controlled by an external parameter ηm and the 
distribution remains unchanged throughout the 
iterations.

( )u l
k k k k kc p p p= + − δ  (13)

where ck is the child and pk is the parent with pk
u 

being the upper bound and pk
l is the lower bound 

and δk is small variation which is calculated from 
a polynomial distribution by using

( )

( )

m

m

1
1

k k k

1
1

k k k

2r if r 0.5

1 2 1 r if r 0.5

η +

η +

δ = <

⎡ ⎤δ = − − ≥⎣ ⎦

where rk is a uniform random number between 
limits (0,1).

3.6 Stopping Rule

The iterative procedure of generating new trials 
by selecting those with minimum function 
values from the competing pool is terminated 
when there is no signifi cant improvement in the 
solution. It can also be terminated when a given 
maximum number of generations (iterations) is 
reached. In the present work, the latter method 
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is followed. However, the value of maximum 
number of generations is decided after a number 
of trial runs. 

4.0 SIMULATION RESULTS

The algorithm is implemented on MATLAB, 
version 7.2 for solving Multiobjective Optimal 
Power Flow (MOOPF) and is experimented 
on various IEEE test cases with modifi cations. 
The non-dominated solutions corresponding 
to the Pareto front is obtained for each test 
case. The control variables were considered 
as both continuous and discrete for all the 
test cases. To verify the effectiveness of the 
proposed approach in solving MOOPF, results 
of the extreme cases (minimum cost, minimum 
emission, minimum real power loss, minimum 
voltage deviations etc.) are presented after 
executing 25 trial runs for each test case. 
For comparison, the results obtained with 
IEEE-30 bus system with the proposed algorithm 
has been verifi ed with those reported in [5]. 
Further, the same results have been compared 
with classical weighted sum method for the 
fi rst two cases of IEEE-30 bus system. The 
application of the proposed algorithm has been 
extended for IEEE-57 bus and IEEE-118 bus 
system. The generator characteristics as well 
as cost and emission data for IEEE-57 bus and 
IEEE-118 bus system is shown in Appendix. 
The GA parameters used in the simulation work 
of this paper is stated below.

Population size : 100
Crosscover overtype : simulated binary crossover
Mutation : polynomial mutation
Crossover probability : 0.9
Mutation probability : 1/n, where n is the number 

of decision variables
Maximum generation : 200

4.1 IEEE 30 Bus System

The network, load, generation and emission 
data were taken from ref. [5]. The system 
is having six generators (at buses 1, 2, 13, 
22, 23, 27), four tap changing transformers 

(between buses 6–9, 6–10, 4–12, 27–28) and 
two switchable capacitor banks (at buses 5 and 
24). The operating range of all transformers is 
set between 0.9–1.05 with a discrete step size 
of 0.01 and the range of capacitor banks are 
considered between 0–40 MVAr with a step size 
of 1. Three different cases have been studied for 
the same test system. 

4.1.1 Case-1

In this case, quadratic cost and emission have 
been considered as objectives to minimize 
while all other network operational constraints 
were taken into consideration. The values of 
the control variables for minimum cost and 
minimum emission have been presented and 
compared between GA based classical weighted 
sum method with NSGA-II in Table 1. It has 
been revealed that the minimum cost achieved 
using NSGA-II is 574.83 $/h as compared to 
the value 575.17 $/h achieved with GA based 
weighted sum approach. Similarly, the minimum 
emission obtained with NSGA-II is 284.23 ton/h 
as compared to the value 284.26 ton/h obtained 
with GA based weighted sum approach. The non-
dominated solutions corresponding to the Pareto 
front obtained using NSGA-II has been shown in 
Figure 3. These results again have been verifi ed 
with those reported in ref. [5]. 

FIG. 3  QUADRATIC COST VS QUADRATIC 
EMISSION
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4.1.2 Case-2

In this case, non smooth fuel cost function is 
considered with valve point loading effects and 
the emission is kept same as earlier. The values 
of the control variables for the extreme cases 
are reported in Table 2 and the non- dominated 
solutions corresponding to the Pareto front 
obtained using NSGA-II is depicted in Figure 4. 
In this case, the minimum generation cost has been 
found as 618.63 $/h with NSGA-II against 691.88 
$/h with GA based weighted sum approach. The 
same result is again found to be in agreement 
with those reported in ref. [5]. The value of the 
second objective i.e. emission is found to be less 
against weighted sum approach. 

TABLE 1

QUADRATIC COST AND QUADRATIC EMISSION AS OBJECTIVES FOR 
IEEE 30 BUS SYSTEM

Variables
Classical weighted sum with GA NSGA-II

For minimum 
cost

For minimum 
emission

For minimum 
cost

For minimum 
emission

PG1 44.0 23.099 43.723 24.657
PG2 57.42 26.32 57.116 28.958

PG13 22.95 35.45 22.592 32.267
PG22 32.0 46.22 35.37 35.541
PG23 18.25 29.705 16.455 29.994
PG27 17 31 16.449 40
V1 1.0 1.0 1.0 1.0
V2 0.99 1.0035 0.99881 0.99884
V13 1.027 0.9587 1.05 1.05
V22 1.0106 0.9910 1.0496 1.0457
V23 1.011 0.999 1.0445 1.05
V27 1.0233 1.0132 1.0472 1.05
T6–9 0.98 0.97 0.9 0.93
T6–10 0.97 1.04 0.99 0.97
T4–12 1.01 1.01 0.92 0.95
T27–28 0.95 0.97 0.97 0.97
QC5 10 19 9 22
QC24 13 6 12 19

Objectives 575.17 $/h 284.26 ton/h 574.83 $/h 284.23 ton/h
Ploss 2.42 MW 2.590 MW 2.505 MW 2.217 MW

FIG. 4  COST WITH VALVE POINT LOADING VS 
QUADRATIC EMISSION
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4.1.3 Case-3

In this case, along with quadratic cost function, 
real power loss and sum of voltage deviations 
are considered as objectives to minimize while 
satisfying all constraints. The values of the control 
variables for minimum fuel cost, minimum 
real power loss and minimum sum of voltage 
deviations have been reported in Table 3 and the 
non dominated solutions have been presented in 
Figure 5. The minimum value of fuel cost is found 
to be 578.93 $/h after executing 25 trial runs and 

TABLE 2

COST WITH VALVE POINT LOADING AND QUADRATIC EMISSION AS OBJEC-
TIVES FOR IEEE 30 BUS SYSTEM

Variables
Classical weighted sum with GA NSGA-II

For minimum 
cost

For minimum 
emission

For minimum 
cost

For minimum 
emission

PG1 41.424 24.50 41.434 25.187

PG2 66.936 30.38 38.551 28.727

PG13 24.969 35.49 24.958 32.17

PG22 13.6512 44.46 31.443 35.299

PG23 18.98 29.59 19.007 30

PG27 27.97 27.21 38.867 40

V1 1.0 1.0 1.0 1.0

V2 1.0214 0.9957 0.99264 0.99936

V13 0.9869 1.0306 0.996 1.0499

V22 0.9917 1.079 1.05 1.049

V23 1.021 1.0173 1.0496 1.05

V27 0.99 1.0095 1.0494 1.0493

T6-9 0.95 1.0 0.9 0.9

T6-10 0.99 0.97 0.9 0.97

T4-12 0.93 0.96 0.9 0.95

T27-28 0.94 1.01 0.94 1

QC5 34 8 36 20

QC24 38 7 19 8

Objectives 691.88 $/h 284.45 ton/h 618.63 $/h 284.1 ton/h

Ploss 4.73 MW 2.43 MW 3.06 MW 2.183 MW

the corresponding values of the other objectives 
may also be easily calculated by executing a full 
ac power fl ow program with the reported values 
of the control variables from Table 3. 

Similarly, for the reported minimum power loss or 
voltage deviations, the other objectives (possibly 
confl icting) may be easily found by running a 
power fl ow program with the specifi ed values of 
variables.  
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FIG. 5  QUADRATIC COST VS POWER LOSS VS 
VOLTAGE DEVIATION

4.2 IEEE-57 bus and IEEE-118 bus System

In order to verify the effectiveness of the 
algorithm in solving the similar problems of larger 
dimensions, MOOPF programs were developed 

for IEEE-57 and IEEE-118 bus system. There 
are 33 control variables considered for IEEE-57 
bus system which consists of seven generators, 
seventeen tap changers and three shunt capacitors. 
For IEEE-118 bus system a total of 130 numbers 
of control variables considered in this MOOPF 
problem consisting of fi fty four generators, nine 
tap changers and fourteen shunt capacitors. The 
control variables are modelled as continuous and 
discrete variables for both the test systems. The 
operating range of all transformers is set between 
0.9–1.05 with a discrete step size of 0.01 for 
both the test systems. The ranges of switchable 
capacitors are assumed between 0–60 MVAr 
and 0–40 MVAr with a step size of 1 for IEEE- 
57 bus and IEEE-118 bus system respectively. 
The algorithm fi nds the optimal solution by 

TABLE 3

QUADRATIC COST, POWER LOSS AND VOLTAGE DEVIATIONS AS OBJECTIVE 
FOR IEEE 30 BUS SYSTEM 

Variables For minimum fuel cost For minimum power loss For minimum voltage deviation

PG1 43.28 28.631 30.652

PG2 57.69 44.758 75.694

PG13 22.114 37.808 19.169

PG22 31.265 45.615 29.736

PG23 12.995 11.275 10.061

PG27 25.5 23.251 27.562

V1 1.0 1.0 1.0

V2 1.0066 0.9947 1.0267

V13 1.0459 1.0284 1.0154

V22 1.0364 1.0105 1.0099

V23 1.017 1.0009 1.0473

V27 1.0481 1.028 1.0012

T6–9 0.95 0.99 1.0

T6–10 0.90 0.92 0.92

T4–12 0.98 0.99 1.0

T27–28 0.9 0.99 1.04

QC5 26 31 17

QC24 11 8 4

Objectives 578.93 $/h 2.1376 MW 0.2043 p.u
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TABLE 4

QUADRATIC COST AND CUBIC EMISSION AS OBJECTIVES 

Test system Minimum cost Mean cost Minimum emission Mean emission

57 bus 26726 $/h. 26886 $/h. 6.95 ton/h. 6.96 ton/h.

118 bus 142360 $/h 151180 $/h. 23.5 ton/h. 23.69 ton/h.

TABLE 5

COST WITH VALVE POINT LOADING AND CUBIC EMISSION AS OBJECTIVES

Test system Minimum cost Mean cost Minimum emission Mean emission

57 bus 27400 $/h. 27560 $/h. 6.95 ton/h 6.96 ton/h.

118 bus 149570 $/h. 163546 $/h. 23.566 ton/h 23.8 ton/h.

TABLE 6

COST WITH VALVE POINT LOADING, POWER LOSS AND VOLTAGE DEVIATIONS AS OBJECTIVES 
FOR IEEE 57 BUS SYSTEM

Objective

Minimum Mean

Cost $/h
Power 
loss in 
MW

Voltage 
deviation Cost $/h Power loss in 

MW

Voltage 
deviation in 

p.u

Fuel cost 27709 20.85 3.143

Power loss 37571 12.62 4.42 28927 14.48 1.3207

Voltage deviations 33747 26.83 1.0381

TABLE 7

COST WITH VALVE POINT LOADING, POWER LOSS AND VOLTAGE DEVIATIONS AS 
OBJECTIVES FOR IEEE 118 BUS SYSTEM

Objective

Minimum Mean

Cost $/h Power loss 
in MW

Voltage 
deviation Cost $/h Power loss in 

MW

Voltage 
deviation in 

p.u

Fuel cost 161300 115.69 1.0987

Power loss 183290 71.5 1.3268 166180 76.713 1.02809

Voltage deviations 165410 103.34 0.94708



182 The Journal of CPRI, Vol. 7, No. 2, September 2011

adjusting the control variables following NSGA-
II optimization algorithm. Many trial runs were 
executed to fi nd extreme as well as mean values 
of the objective functions considered. Results 
for only the objective functions are presented 
below from Table 4 through Table 7 for both 
the test systems. Values of the control variables 
are not presented because of space limit. 

5.0 CONCLUSION

In this paper, a multi-objective optimal power 
fl ow program based on NSGA-II has been 
developed in Matlab and its performance has 

been investigated on three different IEEE test 
cases. The problem has been formulated as 
true multi-objective optimization problem with 
competing and non-commensurable objectives. 
The ability of the algorithm has been tested with 
the presence of both continuous and discrete 
control variables. For validation, results have 
been well compared and found to be competitive 
for IEEE-30 bus system. The approach is further 
tested in solving problem of larger size e.g 
on test cases like IEEE-57 and IEEE-118 bus 
systems. The results obtained demonstrate that 
the algorithm is well competent and effi cient in 
solving highly non linear mixed-integer multi-
objective optimization (OPF) problems. 

APPENDIX

Generator Characteristic of IEEE–57 bus System

A B C E F Α Β Γ

647.81 6.79 0.075 300 0.035 0.278 0.0050 7.64E-10

1055.1 3.33 0.521 120 0.077 0.0266 0.0047 2.21E-9

895.2 5.88 0.452 120 0.077 0.0203 0.0046 8.37E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.0047 2.21E-9

1728.3 9.15 0.007 300 0.035 0.1349 0.0052 7.89E-9

1055.1 3.33 0.521 120 0.077 0.0266 0.0047 2.21E-9

654.69 12.8 0.005 200 0.042 0.155 0.0045 3.2E-9

Gen 1 2 3 4 5 6 7

Pmax 575 100 140 100 550 100 410

Generator Characteristic of IEEE–118 bus System
A B C E F Α Β Γ

1055.1 3.33 0.521 120 0.077 0.026 0.0047 2.21E-9

1055.1 3.33 0.521 120 0.077 0.026 0.0047 2.21E-9

1055.1 3.33 0.521 120 0.077 0.026 0.0047 2.21E-9

1055.1 3.33 0.521 120 0.077 0.026 0.0047 2.21E-9

1728.3 9.15 0.0076 300 0.035 0.134 0.0052 7.89E-10

309.54 7.07 0.02028 100 0.084 0.026 0.0047 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.026 0.0047 2.21E-9
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1055.1 3.33 0.5212 120 0.077 0.026 0.0047 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.026 0.0047 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.026 0.0047 2.21E-9

635.20 12.9 0.00515 200 0.042 0.154 0.0035 3.17E-9

654.69 12.8 0.00569 200 0.042 0.155 0.0045 3.28E-9

1055.1 3.33 0.5212 120 0.077 0.026 0.0047 2.21E-9

987.7 6.5 0.52 120 0.077 0.026 0.0047 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.026 .00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

955.5 4.5 0.52 100 0.084 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

310.5 8.05 0.026 100 0.084 0.0203 0.00512 8.37E-9

645.2 12.8 0.0052 200 0.042 0.1437 0.0046 3.18E-9

1055.1 3.33 0.5212 120 0.077 0.0204 0.0048 8.37E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

222.92 6.45 0.002 150 0.063 0.0108 0.00516 8.72E-9

107.87 8.63 0.0017 200 0.042 0.0204 0.0067 8.72E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

a b c e f α β γ

794.53 6.66 0.084 300 0.035 0.135 0.00252 7.89E-10

794.53 6.66 0.084 300 0.035 0.135 0.00525 7.89E-10

647.8 7.57 0.045 300 0.035 0.28 0.0052 7.89E-10

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

647.81 6.79 0.075 300 0.035 0.278 0.00503 7.64E-10

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

647.8 7.97 0.055 300 0.035 0.274 0.0051 7.7E-10

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9
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1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

635.2 12.9 0.003 200 0.042 0.1545 0.0036 3.17E-9

895.2 5.88 0.452 120 0.077 0.0203 0.00461 8.37E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

945.5 6.3 0.452 120 0.077 0.02 0.0047 8.38E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

1055.1 3.33 0.5212 120 0.077 0.0266 0.00476 2.21E-9

Generator limits of IEEE–118 bus System

Unit Pmax Unit Pmax Unit Pmax Unit Pmax

1 100 15 100 29 492 43 100

2 100 16 100 30 805.2 44 100

3 100 17 100 31 100 45 352

4 100 18 100 32 100 46 140

5 550 19 100 33 100 47 100

6 125 20 119 34 100 48 100

7 100 21 304 35 100 49 100

8 100 22 148 36 100 50 100

9 100 23 100 37 577 51 136

10 100 24 100 38 100 52 100

11 320 25 225 39 104 53 100

12 414 26 260 40 707 54 100

13 100 27 100 41 100

14 107 28 491 42 100
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