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1.0	 Introduction 

In the last decades, electric power systems 
undertook several modifications toward a more 
decentralized energy system paradigm, allowing 
the increase of distributed generation (DG) 
penetration in the power networks at low voltages. 
Connection of new DG fundamentally alters the 
distribution network operation and creates a variety 
of impacts on protective relaying, reclosing and 
distribution automation (DA) which is based on 
feeder terminal unit (FTU). Currently distribution 
automation solution based on feeder terminal unit 
(FTU) has been successfully applied in urban 
distribution networks. In these schemes the FTU 
are installed on the disconnect switches and plays 

the role of the over-current fault detector. The 
fault informations such as over-current fault states 
and over-current amplitudes are sent by FTU to 
the master system. There after the master system 
performs fault location, isolation and restoration 
function by utilizing the appropriate actions.

Conventional power distribution systems are 
radial in nature with unidirectional flow of power 
from one end to another. Penetration of new DG 
energy sources causes bidirectional flow of the 
fault currents on the feeders of the distribution 
systems. In order to detect the correct location 
and nature of the faults on the power feeders 
under such circumstance both the magnitude and 
direction of the fault currents required. 
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The detection and location of high impedance 
faults (HIF) in power distribution systems (PDS) 
is a great challenge for the power community 
[1]. This is due to highly non-linear nature of 
fault signals which are utilized by fault detection 
and location algorithms. HIF are low current 
faults and are very difficult to be detected by 
conventional overcurrent relays. Moreover, 
the nature of HIF may similar to normal load 
currents which were varying due to normal load 
change. This poor magnitude of fault currents 
may lead to the failure of existing over current 
based protection schemes. Mostly HIF faults 
in the distribution systems are due to broken 
conductors or its contact with poorly grounded 
objects, like trees, vehicles and wood fences. 
In order to analysis the impact of HIF on the 
fault detection techniques, several studies have 
been made in the past and are available in the 
literature [2]–[3]. This paper discusses a new fault 
detection and location scheme for investigation 
of HIFs in feeders with DG for reduction of the 
restoration time. The proposed methodology is 
based on the use of particular features of HIF 
and artificial neural networks (ANN). This paper 
is organized in different sections. Section-1 
discusses the general introduction regarding the 
detection of HIF in the distribution systems. 
In section-2, the HIF fault model used in this 
study is presented. In the section-3, the impacts 
of distributed generation in PDS are discussed. 
In the section-4, a brief introduction to ANNs is 
presented. Section-5, presents brief introduction 
on ANN. Results are discussed in section-6 of 
this paper. Finally the conclusions and future 
scope of work are discussed at the end of the 
paper.

2.0	  hif modelling

In this paper, a HIF is modeled to very similar to 
real faults. The proposed HIF model also takes 
into account the existence of an electric arc at 
the fault point. Electric arc has a voltage/current 
nonlinear relation and might show an asymmetric 
behavior of the positive half cycle with respect 
to the negative cycle. This model is illustrated in 
Figure 1 [4].

FIG. 1	 HIF MODEL

The HIF is modeled with two absolute DC sources 
in series with diodes. During the positive half 
cycle, the current flows through Vp and during 
the negative, though Vn. These voltage values 
are maintained constant during the simulations. 
The harmonic content generated by the fault are 
functions of the voltage difference Vn – Vp and the 
relation XL/R. 

3.0	D ISTRIBUTED GENERATION 		
	 IMPACTS

The addition of new generation units to the power 
distribution feeders has significant impact on the 
overall operation of these systems. As it is a 
new source of power inside the system, the main 
change introduced by the addition of DG in PDS 
is the loss of its radial characteristic.

The addition of DG changes the original power 
flow, making a modification in the protection 
systems settings necessary. Thus, the protection 
equipment that has protection routines and settings 
for a specific circuit could work improperly [5].
For detection of faults on the radial feeder, the 
magnitude of the fault signals are sufficient. But 
in case of bidirectional angle information of the 
fault signals are also required for detection of the 
faults in the PDS under DG penetration [6].

4.0   DISCRETE WAVELET TRANSFORM

Discrete wavelet transform is found to be useful 
in analyzing transient phenomenon such as that 
associated with faults on the transmission lines. 
Multi-Resolution Analysis (MRA) [7] is one of 
the tools of Discrete Wavelet Transform (DWT), 
which decomposes original signal typically non-
stationary signal into low frequency signals called 
approximations and high frequency signals called 
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details, with different levels or scales of resolution. 
It uses a prototype function called mother wavelet 
[8], [9]. At each level of multiple decomposition, 
approximation signal is obtained by convolving 
signal with low pass filter followed by dyadic 
decimation, whereas detail signal is obtained by 
convolving signal with high pass filter followed 
by dyadic decimation. The decomposition tree is 
shown in Figure 2.

FIG. 2	 WAVELET TRANSFORM (MRA)

The DWT maps the one dimensional time domain 
signal f (t) into two dimensional signals as:
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Where cj, dj are approximate and detail coefficient 
respectively; φ (t) and ψ(t) are scaling and wavelet 
functions respectively and J is the decomposition 
level [9].

5.0	 neural networks

The feasibility of using artificial neural network 
(ANN) for transmission line protection has been 
confirmed. ANN consists of highly distributed 
interconnections of nonlinear processing elements 
and can be considered as an adaptable system 
that can learn relationships through repeated 
presentation of data and is capable of generalizing 
to new, previously unseen data. Neural networks 
are used for both regression and classification. In 
regression, the outputs represent some desired, 
continuously valued transformation of the 
input patterns. In classification, the objective 
is to assign the input patterns to one of several 
categories. ANNs possess excellent features such 
as generalization capability, noise immunity, 
robustness and fault tolerance [10]. Therefore, the 
decisions made by ANN based relaying algorithm 
will not be seriously affected by variations in 

system conditions. For this, neural network 
for a particular application must be trained. 
There are different training algorithms for feed-
forward networks [11]. All of these algorithms 
use the gradient of the performance function to 
determine how to adjust the weights to minimize 
performance function. The gradient is determined 
using a technique called back propagation which 
involves performing computations backwards 
through the network.

A variation of back propagation algorithm is 
called Levenberg-Marquardt (LM) algorithm and 
is used for neural network training [12]. Since 
this algorithm is one of the fastest methods for 
training moderate-sized feed forward neural 
networks. The LM algorithm which updates the 
weights is expressed as:
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Where J is the Jacobian matrix that contains first 
derivatives of network errors with respect to the 
weights and biases, e is a vector of network errors,  
J T J is an approximation of Hessian matrix, the 
gradient is J T e and μ is a scalar affecting the 
performance function.

6.0	 the Implementation of 
proposed methodloligy

The use of transient energy of higher harmonics 
is used to detect HIF in this research paper. 
During simulation it is seen that transient energy 
of harmonics corresponding to fault signals have 
unique aspects due to the occurrence of HIFs. Its 
value is obtained by discrete wavelet transform 
decomposition using multiple resolution analysis 
(MRA) of simulated fault current signals [13].

The proposed scheme utilizes fault current signals 
which are obtained from Current Transformers 
(CT’s) connected on the faulty feeders. Flow 
chart of the methodology is shown in Figure 3. 
In this flow chart the discrete wavelet transform 
of the fault signals are performed to extract the 
transient energy content which is further utilized 
for the detection of the faults on the distribution 
feeders.
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FIG. 3 	 FAULT DETECTION ALGORITHM

6.1	N etwork Simulation

The training data sets for an ANN were obtained 
from network simulation of a typical distribution 
system as shown in Figure 4.  The test power 
network consists of a conventional synchronous 
machine connected to a transmission on which 
the faults are detected. A wind mill is connected 
at remote end of the transmission line. The 
performance of the proposed fault detection 
algorithm is tested for remote end connected 
distributed energy resources. The control feedback 
control system of wind mill is also shown in the 
Figure. The details of networks data are available 
in the PSCAD simulation software.

FIG. 4	 DISTRIBUTED GENERATION MODEL

Digital simulations were performed using an 
electro-magnetic transient program PSCAD/
EMTDC [14] for different types of faults, fault 
location, fault resistance and fault inception 
angle. Conditions considered for training pattern 
data generation is shown in Table 1.

TABLE 1

SYSTEM PARAMETERS USED FOR  
GENERATION OF TRAINING PATTERNS

Fault type
a-g, b-g, c-g, a-b, b-c, c-a, 
a-b-g, b-c-g, c-a-g, a-b-c 
and a-b-c-g

Fault resistance (Ω) 0 10 , 20 , 50 , 100 

Fault inception angle 
(0’)

0, 45, 90, 135, 180, 225, 
270, 315 and 360

For each simulated case the faults were applied 
in 10 different locations in each feeder. Of 
these 10 positions, 8 were used in the ANN 
training process while the other 2 were used 
as test cases for the trained ANN model. The 
conditions for the test case generation are 
listed in Table 2.

Simulated waveforms for single line ground fault 
current for the fault on the transmission are shown 
in Figure 5 below.

FIG. 5	 SIMULATED THREE PHASE FAULT



The Journal of CPRI,  Vol. 10,  No. 2,  June 2014	 249

TABLE 2
SYSTEM PARAMETERS USED FOR  

GENERATION OF TESTING PATTERNS
Fault type a-g, b-g, c-g, a-b, b-c, c-a, 

a-b-g, b-c-g, c-a-g, a-b-c,  
a- b-c-g

Fault resistance (Ω) 5 Ω, 30 Ω, 55 Ω, 80 Ω, 105 
Ω, 135 Ω ,155Ω

Fault inception 
angle (0’)

0, 60, 120, 180, 240, 300, 
360

6.2	 Feature extraction

The feature extractor is used to extract the 
feature for the raw fault signals. The processes 
data obtained from the feature extractor are input 
signals that is used in the next processing block 
(ANN training) [15]. The input current signals 
are captured at 5 KHz sampling frequency. These 
input patterns obtained from the feature extractor 
are the transient energy of harmonics of discrete 
three phase fault current samples. Discrete 
wavelet transform is used for feature extraction. 
DB 4 is used as mother wavelet (change in 
transient energy of decomposed coefficients for 
fault samples is clearly observable at db-4 mother 
wavelet) and level 2 decomposition is used for 
feature extraction using multiple resolution 
analysis (MRA).In Figure 6  below the details 
coefficients of harmonics of fault current and 
healthy current are shown. 

FIG. 6	 DETAILED COEFFICIENTS 
	 (A) FAULTY PHASE   (B) HEALTHY PHASE

Figure 7 shows the value of transient energy of 
higher harmonics for fault signal and healthy 
signals. From Figure 7 it is clearly observable 
that magnitude of transient energy for fault is 

quite higher than the non-fault signals due the 
presence of higher frequency transient signals.

FIG. 7	 TRANSIENT ENERGY CONTENT

The input patterns (training and test patterns) 
are normalized to [+1,-1] before passing to the 
ANN training module. The main advantage of 
normalization is to avoid attributes in greater 
numeric ranges that dominate which are in smaller 
numeric ranges.

6.3	 Design of Fault Classifier Unit

The major issue in the design of ANN architecture 
is to ensure that when choosing the number of 
hidden layers and number of neurons in the 
hidden layers, its attribute for generalization is 
well maintained. In this respect, since there is 
no parametric/theoretic guidance available, the 
design has to be based on a heuristic approach 
[16]. The selected structure of the ANN unit is 
shown in Figure 8. Hyperbolic tangent function 
was used as activation function for the neurons in 
the hidden layers [17]. Pure linear function is the 
activation function for the neurons of the output 
layer.

FIG. 8	 NEURAL NETWORK STRUCTURE
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The ANN output layer consists of 4 neurons. Four 
outputs of the scheme corresponding to each 
phases and neutral of the system. Based on the 
fault type that might occur on the system, each of 
the network outputs should be either 0 or 1.The 
the numbers of hidden neurons are 15.

Figure 9 shows the training graph obtained 
with the Levenberg-Marquardt algorithm while 
training the neural network, of the proposed fault 
identifier scheme. From Figure 9, it is seen that 
the error rapidly converges to the desired level 
and the training has stopped after 99 iterations, 

FIG. 9	 MSE REDUCTION DURING TRAINING OF 
FAULT CLASSIFIER

after reaching the set desired MSE of 1e-06. 
The performance of a trained network can be 
measured to some extent by the errors on the 
training, validation and test sets, but it is often 
useful to investigate the network response in 
more detail. One option is to perform a regression 

analysis between the network response and the 
corresponding targets. The MSE is reduced 
to order of e-10 even though goal is e-06.  
Figure 10 shows only one of the four graphical 
outputs provided by regression analysis. The 
network outputs viz phase ‘a’ is plotted versus 
the targets as open circles. The best linear fit is 
indicated by a solid line. Output of regression line 
1 indicates fault is detected. 

FIG. 10	 REGRESSION ANALYSIS FOR PHASE A-G 
FAULT

The result of fault detection on different phases 
of a distribution feeder is tabulated in Table 3. 
The proposed protection scheme is independent 
of fault current magnitude. Training of extracted 
feature is provided with ANN. Then trained 
structure is tested for different simulated fault 
samples. It is observed that fault is detected with 
high accuracy. The effect of non-linear nature of 
fault resistance on the fault detection has little 
effect since non-linear feature of fault is used for 
fault detection.

TABLE 3
TEST RESULT OF FAULT DECTOR

Fault 
Type

Fault  
Location

Fault 
inception 

angle

Fault
 Resistance

ANN Output

Phase a Phase b Phase c Neutral

a-g 10 90 10 0.9870 0.0030 0.0056 1.0350
b-g 15 45 0 0.0230 1.2040 -0.035 0.9750
c-g 20 0 50 0.0560 0.5600 1.035 0.8900
a-b 25 135 20 0.9560 1.4608 0.4572 0.3567
b-c 30 225 100 0.3300 1.2403 1.2670 0.2980
ac-g 35 270 10 0.8976 -0.369 1.2640 0.9378
abc-g 40 45 20 1.2075 1.1562 0.9672 0.8452
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As discussed above, the fault classifier gives the 
output 1 when there is sufficient high transient 
energy content in the input signal. From the  
Figure 7, it is clear that the transient energy 
content of a fault phase is very high as compare 
to the non-faulty phases. The fault classifier 
maps the high transient content near to 1 and low 
transient energy content near to 0.

7.0	CONCLU SION

In this paper research paper a novel fault detection 
methodology for power distribution feeders with 
distribution generation is proposed. The proposed 
scheme is capable to lead precise fault detection 
and location estimations for both linear and non-
linear HIF faults.

 The proposed scheme is based on the signature 
extraction using the wavelet theory and training 
the ANNs structure.  In the proposed fault 
detection scheme the transient energy content of 
the high frequency component of faulty signal 
are utilized for training the ANN structure. Based 
upon the level of input, the ANN differentiates 
the fault as per their nature and location. In the 
proposed fault detection scheme direct magnitude 
of the fault currents are not utilized and hence 
it is immune to the impact of HIF on the fault 
location algorithms.
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