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1.0 IntroductIon

The oscillations in power system remains as 
one of the main problem for smooth and stable 
operation of systems. Power systems are always 
driven close to their limits, because of continuous 
increase in power demand. All of this, deals with 
the transmission capacity of power system. In this 
way, to help up the power transfer capacity, while 
keeping up the entire system stable, is one of the 
key objectives for the power system operators.

When we transfer bulk amount of power to a 
long distance via a relatively weak tie lines and 
high gain exciters, leads to the problem of small 
signal oscillation [1]. Resulting power system 
oscillations turned power system into instability 
and even into blackouts. In this instability problem 
there are different frequency components which 

are known as modes. These mode are called as 
local area modes and inter-area modes [2]. In 
small signal stability problems local area mode of 
oscillation can be reduced by installing a Power 
System Stabilizer (PSS) [3]. These controllers use 
local signals e.g. voltage in tie lines, power and 
frequency deviation, Rotor Speed Deviation as 
input. But the reliability of PSS to damp inter-area 
mode of oscillations is quiet less. So, satisfactory 
performances at an operating point is not always 
possible with the PSS alone. However, due to 
wide variation in system conditions, operating 
conditions in the power system,which always 
changes. Local area controllers i.e. PSS lack the 
global observations, so they are unable to damp 
inter-area oscillations.

So, to damp out the inter-area oscillations we need 
to design a Wide-Area damping controller. For 
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designing the Wide Area Power System Stabiliser 
(WPSS), the input signal must be defined. To 
select the input signal for WPSS both the modes 
i.e. inter-area and local area modes should be 
known. This paper contains the identification of 
modes in power system oscillation while study of 
the effect of PSS and WPSS is not considered in 
this paper work. Case study has been carried out 
on a two area, four machine, and eleven bus power 
systems [1] and Ten generator, 39 bus (IEEE 39 
bus)  system. Designed system is linearized around 
an operating point and eigenvector analysis is 
used to identify the local and inter-area modes of 
oscillations present in both the cases.

2.0 Fundamentals undamentals 
oF small sIgnal stabIlIty   – 
mathematIcal ananlysIs

The equilibrium points around which the analysis 
takes place basically takes a snapshot of the 
system’s response to a given input at a specific 
instant of time. This is found by getting all of the 
derivatives equals to zero and solving it further. 
Linear systems only have one equilibrium point 
and satisfy the equation  f(x0) = 0 and therefore 
contain information about the system’s stability.

Linear systems possess the nature of having 
stability or lack thereof, independent of the input. 
Whether or not a system is stable depends solely 
on the system itself. As a result any system that 
is stable will return to that stable state assuming 
zero input [1] [2]. The stable states of a linearized 
system can be categorized two different ways. A 
system is said to be asymptotically stable if it 
returns to the same equilibrium point after a small 
disturbance. Local stability appraises the return 
of a system to some other equilibrium after a 
small disturbance, all the while remaining within 
a small region around the original equilibrium 
point.

The state space representation and subsequent 
linearization of a power system begins with 
the description of the corresponding nonlinear 
differential equations. These differential equations 
such as the swing equation, that numerically 
model the operation of the different elements of 

the power system. In the generator models, the 
angular dynamics between the rotor and stator 
axis depend on the angular difference:

 ....(1)

Where ω is the rotary angle, determines the 
frequency.

The swing equation for modelling the dynamic 
behaviour of synchronous machine, is provided 
by Equation 2.

 ....(2)

where δ is the angle of generator and PM is the 
mechanical power that is converted into electrical 
power.

From these equations state space representation is 
started with the desired variable (i.e. rotor angle), 
defined as the  independent input variable xi .

    ....(3)

From Equation 3, a vector-matrix notation is 
conceived that is comprised of a state vector, 
input vector and function relating the two, where 
the function and variable vectors are of the form 
in Equation 4.

  ....(4)

This relation in turn, governs the response of the 
system as outside inputs are added. An output 
vector is also created describing what is observed 
involving the same state and input variables used 
in the state vector of Equation 5 . 

 ....(5)

Note: y and g are defined as the vectors in  
equation 6.
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 ....(6)

Now, we specify initial state and input vectors x0 
and u0 and utilize the zero velocity characteristic 
mentioned earlier in order to linearize the system.

 ....(7)

A small disturbance is then added in the form 
of deviations Δx  and Δu. This allows utilization 
of Taylor series expansion with the higher order 
terms removed resulting in linearized equations.

 ....(8) 

 ....(9)

 ....(10)

 ....(11)

After grouping them into the form shown in 
Equations 12 and 13.

 ....(12)

 ....(13)

A, B, C and D are vectors defined in Equation 14.

 ...(14)

The A matrix from above is the most important 
as it presents a numerical view of the system in 
which its inherent characteristics can be drawn 
out. The matrix A is equivalent to the Jacobian 
matrix evaluated at the equilibrium point. To 
extract the information stored within the system 
matrix A or State matrix, then we calculate the 
eigenvalues. This is performed by solving the A 
matrix’s relation to the identity matrix that results 
in the Characteristic Equation 15.

 ....(15)

Depending on the nature of the resulting values, 
internal system information can be derived. 
According to Lyapunov’s  theories, a system is 
asymptotically stable if its characteristic equation 
yields eigenvalues of Equation 16 with negative 
real parts.

 ....(16)

Eigenvalues calculated from the above equation 
gives the following results.

 y If at least one eigenvalue has a positive real 
part, the system is unstable. 

 y If eigenvalues having real parts of zero yield 
no conclusive determination. In addition, real 
and complex eigenvalues differ in oscillatory 
nature. 
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 y If real part of the eigenvalue is negative, it 
represents non oscillatory modes and stable 
system.

 y If the real eigenvalue is positive, it excerupts 
that the system has aperiodic instability. 

No matter the sign, magnitude corresponds to the 
level of behaviour in that, the larger the value 
the heavier the effect. For complex values (that 
always exist in pairs), oscillation is confirmed. 
This then enables us to calculate the damping 
value and frequency of the complex eigenvalues. 
The amount and tendency of damping is given by 
the real part of the complex eigenvalue. Negative 
real parts mean damped oscillation and positive 
real parts mean growing oscillation. The frequency 
of oscillation is a function of the imaginary part 
as shown in Equation 17.

 ....(17)

The Equation 18 represents damping ratio.

 ....(18)

The amplitude decay using the damping ratio is 
given by Equation 19.

 ....(19)

After finding eigenvalues of the system, 
eigenvectors are calculated to study other 
aspects of the system’s behaviour such as 
mode contribution and shape. Eigenvectors 
exist as right and left column and row vectors 
(respectively) that correspond to each eigenvalue. 
The right eigenvector for each eigenvalue and its 
mode shape can be found using column vector 
satisfying Equation 20.

 ....(20)

Similarly, the row vector that represents the 
left eigenvector is satisfied by Equation 21 and 
gives the contribution of each eigenvalue to its 
particular mode.

 ....(21)

The discerning distinction between right and 
left eigenvectors is their orthogonality for 
the multiplication of vectors  from  differing  
eigenvalues and a constant result for the 
multiplication of vectors from the same 
eigenvalue. The right and left eigenvectors then 
form Equation 22.

 ....(22)

A diagonal matrix of the eigenvalues is created as 
shown in Equation 2.23.

 ....(23)

Next, we analyse the transformation of the original 
state variables, such that each variable is linked 
to only one mode as opposed to each variable 
being the linear combination of all the modes of 
the system. This enables individual participation 
levels. We begin with Equations 24 and 25 and 
form a new state equation of Equation 26 

 ....(24)

 ....(25)

 ....(26)

Equation 26 can be reduced to Equation 27.

 ....(27)

Given the time sensitive solution of Equation 28, 
we arrive at the expression in Equation 29.

 ....(28)



The Journal of CPRI, Vol. 11, No. 2, June 2015 251

 ....(29)

Using the relations in Equations 30 and 31, we see 
the response of any particular variable simplifies 
to the expression in Equation 32.

 ....(30)

 ....(31)

 ....(32)

Where ci is known as the magnitude of excitation 
and defined by Equation 33.    

 ....(33)

This concludes the mathematical derivations 
of the equations involved in modal analysis of 
power system.

3.0 small sIgnal  stabIlIty - mode 
IdentIFIcatIon technIques

There are several existing methods of solution 
concerning the analysis of large power systems. 
The general approach behind each method is simi-
lar in the sense that the aim is to minimize the 
amount of information being considered and fast-
er output at high reliability. In order to accomplish 
this, it is important to identify what information to 
be addressed and what eigenvalues to be focused 
upon. Wide Area Measurement System (WAMS) 
provides states of the system at faster rate.

3.1 aesoPs : analysis of essentially   
 spontaneous oscillations in power   
 systems

AESOPS is an algorithm that minimizes the 
complexity of computation by focusing on certain 

eigenvalues of the system, which are involved in 
the rotor angle modes of the system. This is an 
iterative process, starts with probable guess of 
what the eigenvalue may be. A torque value is 
generated from this initial eigenvalue and applied 
to the rotor of one of the identified  generator. 
Subsequently, the complex frequency response 
as a result of the applied torque is determined 
which yields a linear system response. From this 
response a new eigenvalue is calculated. It then 
results into a new torque value that is applied 
and the process continues until the eigen value 
converges. Once the desired level of convergence 
is achieved, it is assumed that the final value is 
associated with a certain mode of oscillation that 
the generator participates in heavily [4] [6] [8]. 
This technique requires large computations and 
analysis for mode identification, which might 
be too much time taking for a power operator to 
address power system stability problems.

3.2 MAM : Modified Arnoldi Method

MAM approach is another way of determining 
system characteristics efficiently using a 
particular reduction method. This method takes 
a starting vector and composes a matrix called 
the upper Hessenberg matrix that has the same 
eigenvalues as the original state matrix A. This 
matrix is a reduced version of the matrix A with 
certain properties that allow eigenvalues of A that 
pertains to a specific point. An iterative process 
will increase accuracy and other processes must 
be carried out during the procedure to ensure a 
reduction of the accumulated errors [8].

3.3 PEALS : Program for Eigenvalue   
 Analysis of Large Systems

PEALS is a method uses both AESOPS & MAM 
techniques in conjunction. These two techniques 
are used together because they work cohesively as 
an analysis method. The AESOP part of PEALS 
determines the eigenvalues involved in the rotor 
angle modes [6]. Increased complexity, bulk data 
management and analysis could cause increasing 
accumulated errors.
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3.4 SMA : Selective Modal Analysis 

SMA  is  a  process that deals with the task of 
analysis through modal order reduction technique. 
It is an iterative reduction technique utilizing 
eigenvalue matrix analysis to converge the original 
system down to a more concise representation 
of state contribution. The state variables of 
rotor angle, flux linkage and motor speed are 
used to provide a look into the sensitivity and 
relationships of the state variables and its modes 
and participation factors. The process converges 
to the more active modes while separating out the 
less relevant modes of the system.

The limitations of SMA is  its impracticality on 
very large power system as it has got complex 
analysis of power systems. This is due to the large 
size of the matrices and its the eigenvalue analysis 
to be carried. Each generator have three state 
variables, thus a matrix is three times the number 
of generators in the system, so order of the matrix 
increases with the number of the generators in the 
system, so increases the difficulty to apply SMA 
technique [5] [7] [8] [9].

3.5 S - Method 

The S-method is an analytical method that takes 
advantage of the state matrix by transforming 
the eigenvalues from one plane into the other. 
Instead of relating the eigenvalues as existing in 
the s plane, they are converted onto the z plane. 
This has a great effect as this transformation now 
places the eigenvalues into a circumferential axis 
as opposed the vertical imaginary axis of the s 
plane. The corresponding right imaginary axis / 
left imaginary axis designation in the z plane is 
the area inside of the circle and outside of the 
circle. In essence, this is a graphically based 
tool similar to other techniques that differs in 
eigenvalue presentation [6]. Since this technique 
is based on the transformation from continuous 
domain (s- plane) to discrete domain (z–plane), 
this discretisation process may cause loss the 
accuracy with the original system.

3.6 q – r transformation 

The Q-R transformation technique is similar to 
those listed above. In this approach, the A matrix 
of the system is decomposed into a product of two 
matrices; Q and R. The R matrix is a triangular 
matrix and Q matrix is a unit matrix. Using 
the matrices Q and R, solve  for the unknown 
variables, brings the eigenvalues in an iterative 
process, where the solution converges to each 
eigenvalue of the system [7] [8] [9].

4.0 Wams – WIde area 
measurement systems

For an affective operation of the adaptive 
protection of the system, very precise and 
consistent system monitoring parameters like 
magnitude and angle of voltage, current and power 
flows are essential. Now a day’s, in most of the 
electrical networks asynchronous measurements 
that are collected in the control centre and state 
estimation is performed. Steady state models are 
used in Supervisory Control And Data Acquisition 
(SCADA) system while measurements of 
various electrical quantities (voltage & current 
magnitudes, active & reactive power flows and 
injections etc) also through a SCADA. This 
leads to a biased state estimation, where biases 
mainly originate from utilization of single phases, 
positive sequence models and measurement time 
skewness. These biases can be eliminated using 
Phasor Measurement Units (PMU) measurements 
in combination with highly accurate, three phase 
and asymmetric power system models [10] [11] 
[12]. Moreover, synchronized and time tagged 
measurements that are referenced to the Global 
Positioning System (GPS) signal eliminate biases 
from the geographic spread and separation of 
power systems.

WAMS based measurements are able to give real 
time power system phasors at a rate of 60 phasors 
/ second. This is now possible with Phasor 
Measurement Unit (PMU) enabled wide area 
measurement system (WAMS) [13] [14] [21].
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5.0 ProPosed mode IdentIFIcatIon 
oF tWo area system 
oscIllatIons

5.1 Low Frequency Oscillations

Low frequency oscillations (LFOs) are generator 
rotor angle oscillations having a frequency in the 
range of  0.1 Hz to 3.0 Hz, and are defined by 
how they are created or where they are located in 
the  system. The use of poorly tuned generation 
excitation, high-gain generator exciters, HVDC 
converters or static compensators may create 
LFOs with negative damping in the system. This 
is known as a small-signal stability problem. 
The damping of these oscillations is commonly 
performed with power system stabilizers. LFOs 
includes local mode of oscillations, torsion modes 
induced by the interaction between the mechanical 
and electrical modes of a turbine-generator 
system, and inter-area modes of oscillation which 
may be caused by either high gain exciters or 
heavy power transfers across weak tie-lines.

Inter-area oscillations are in the order of 0.1 Hz 
to 0.7 Hz, and are characterized by groups of 
coherent generators swinging against each other 
when present in a power system. This kind of 
oscillation restricts the amount of power transfer 
on the tie-lines between the regions containing 
the groups of coherent generators  [15] [16] [17].

5.2 Verification of Oscillatory Modes Using  
 Normalized Eigenvector Method 

Eigen value analysis helps in identifying poorly 
damped or unstable modes in power system. They 
are highly nonlinear; however, it can be assumed 
that these systems behave linearly under normal 
operating conditions. The system is linearized 
around an operating point. Eigen value analysis 
is a well-established approach for studying the 
characteristics of low frequency oscillatory modes. 
The approach has several attractive features: each 
individual mode is clearly identified by its Eigen 
values.. Eigen value analysis is commonly used 
to investigate the properties of low frequency 
oscillations in multi-machine power system 

models as well. In addition, the analysis also 
provides valuable information about sensitivities 
to parameter changes [18] [19] [20].

5.3 Case study : Two Area Power System  
 Modelling

The case study has been carried out on 4 machines, 
11 buses power system as given in Figure 1. The 
system parameters are given as follows [1].

FIG. 1 TWO AREA POWER SYSTEM

The system consists of two similar areas connected 
through a weak tie-link. As shown in Figure 1, 
each area comprises of two coupled units. G1 and 
G2 are generators in Area-1 and G3 and G4 are 
generators in Area – 2. Power system consist of 
non-linear characteristics and hence system model 
is non-linear in nature. However, to analyse the 
small-signal stability of this non-linear system, 
it is linearized around an operating point so that 
the system can be analyse through linear control 
theory. 

The created power system is linearized   around 
an operating point by the command ‘linearize’ in 
MATLABTM. lin=linearize (‘sys’) command takes 
a model name ‘sys’ and returns a linear time-
invariant state-space model. Linearized power 
system model is described as: 

 ...(34)

 ...(35)

Where x(t) is state vector, u(t) is input vector 
and y(t) is output vector and A, B, C and D are 
appropriate matrices of state space. State space 
model of synchronous generator and other 



254 The Journal of CPRI, Vol. 11, No. 2, June 2015

components is obtained. Given state space model 
consist of all the states present in the system. 
Each of the generator is equipped with Automatic 
Voltage Regulator (AVR). Two-area system data 
along with AVR is given in [1]

The generator present in the system is modeled 
using 6th order differential equation and AVR 
equipped with each generator is modelled using 
1st order differential equation. This model gives 
a total of 56th order differential equation.

TABLE  1 
MODE IDENTIFICATION

no Eigen  
Values

Fre-
quency 

(hz)

Damp-
ing 

ratio

modes/ 
remark

1,2 -0.7519 ± 
6.9945i 1.1132 0.1069 Local Area

3,4 -0.7479± 
7.2177i 1.1487 0.1031 Local Area

5,6 -0.0569±
3.9397i 0.6270 -0.0144 Inter-Area

7,8 -19.109±
14.4025i 2.2922 0.7986 -

11 -11.8662 - 1 -

Above table shows the eigenvector analysis of 
the two area power system. The eigenvector 
associated with a mode indicates the relative 
changes in the states which would be observed 
when that mode of oscillation is excited. From 
above table we can observed that the frequency 
of local area modes are between 0.7 to 2 Hz and 
frequency of inter-area modes is between 0.2 to 
0.7 Hz. It enables us to confirm that given modes 
in the table above is an inter-area and local area 
mode. 

5.3.1 Results - plots of rotor angle terms of local-
area mode eigen vector

When dynamics of generator oscillates against 
the rest of the elements of the power systems or 
another generator in the same area then it is called 

local area mode of oscillations. Typical value of 
local area mode of frequency lies in the range of  
0.7 Hz to 2.0 Hz.

When the dynamics of one area oscillates against 
the dynamics of the other area then this type of 
oscillation is called Inter-Area oscillation. Typical 
value of Inter-Area mode of frequency lies in the 
range of 0.1 Hz to 0.7 Hz.

Since generators 1 is oscillating against generators 
2 and generator 3 is oscillating against generator 
4 of same area so given Figure 2 and Figure 3 
plots confirms that this is a local area mode. 

FIG. 2 LOCAL AREA MODE EIGEN VALUE : -0.7519 ±  
 6.9945I

FIG. 3 LOCAL AREA MODE EIGEN VALUE: -0.7479 ±  
 7.2177I

5.3.2  Results - Plot of Rotor Angle Terms of  
 Inter-Area Mode Eigen Vector 

Inter-Area modes can be recognized as the 
dynamics of the generators of one area will 
oscillate against the dynamics of the Generator 
of second area at a phase difference of 1800.
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Here dynamics of area-1 is oscillating against 
dynamics of area-2 so Figure 4 is referred as inter-
area modes. However, the largest components 
of the eigenvector are those associated with the 
second exciter state. This means that the inter-area 
mode may be most easily observed by monitoring 
those states. It does not mean that these states 
are necessarily good for controlling the inter-area 
mode.

FIG. 4 INTER AREA MODE EIGEN VALUE: 0.0569 ±  
  3.9397I

5.4 Case study : Ten machine thirty-nine  
 bus system (ieee 39 bus system)

The proposed method is further implemented in 
another larger system shown Figure 5 i.e. a 10 
machine system 39 bus system [22] also knows as 
New England Power Grid or IEEE 39 bus system. 
The systemis of 10 machines and 39 buses, where 
G1 to G9 are equipped with static excitation 
and local PSSs. G10 is a equivalent unit for the 
study. The system data is taken from [23]. The 
generation system is modelled as 6th order, exciter 
as 1st order and LPSS is of 3rd order.

System is modeled in MATLABTM-Simulink 
and linearized it around an operating point. The 
linearized model came as 96th order. From modal 
analysis it has been found the three distinct inter-
areamodes are present in the system shown in 
Table 2. 

FIG. 5 SINGLE LINE DIAGRAM OF 10 GENERATORS AND 39 BUS POWER SYSTEM (IEEE 39 BYS SYTEM)
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TABLE  2

MODE IDENTIFICATION

mode mode 
shapes

Fre-
quency 

(hz)

Damp-
ing 

ratio

modes/ 
remark

1 G10 Vs 
G1 – G9 0.6236 0.0706 Inter 

Area

2
G1,G8,G9 
Vs G4 – 

G9
1.0412 0.0702 Inter 

Area

3 G2,G3 Vs 
G4, G5 0.9687 0.0693 Inter 

Area

5.4.1 Results - Plot of Rotor Angle Terms of 
Inter-Area Mode Eigen Vector 

The above three modes of the table are shown in 
radial plots for better understanding as Figure 6, 
Figure 7 and Figure 8 respectively. Here Mode 
-2 and Mode -3 have low damping as Mode -1 
but have relatively larger frequency compared to 
Mode -1 so these modes will get settled in few 
cycles. Hence, the critical mode in this case is 
Mode -1 with eigen valus of  −0.2777 ± j3.9129.

FIG. 6 MODE-1 INTER AREA MODE

FIG. 7 MODE-2 INTER AREA MODE

FIG. 8 MODE-3 INTER AREA MODE

6.0 conclusIons and Future 
scoPe

The case study on two-area, four machine and 
eleven buses power system [1] has been carried 
out and it is also observed that mode identification 
problem has been solved using normalized 
eigen vector method. The optimal design of 
the synchronous generator involves a deep 
understanding of two-area power system. Created 
power system model is linearized in Matlab. 
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State space model of two-area, four machine and 
eleven bus power system has been obtained. The 
effect of various critical parameters like damping 
ratios, frequencies are verified on power system. 
All the simulation results are found to be closed 
accordance with theoretical results. 

In this thesis work we have verified local and 
inter-area modes of oscillation. 

The same work could be extended for more area 
systems or for a larger systems. Also using these 
mode identification, we can design a wide-area 
controller to damp inter-area mode of oscillations.
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