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Power System Stabilization by a Coordinated Application of Power System
Stabilizers using Hierarchical Neuro-Fuzzy Logic
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Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation
system in order to damp the low frequency power system oscillations. To overcome the drawbacks
of conventional PSS (CPSS), numerous techniques have been proposed in the literature. Based on
the analysis of existing techniques, this paper presents the stabilization of multi-machine power
system based on coordinated Adaptive Hierarchical  Neuro-Fuzzy network based power system
stabilizer (AHNFPSS) design. The proposed system consists of a Hierarchical neuro fuzzy controller,
which is used to generate a supplementary control signal to the excitation system. The proposed
method has the features of a simple structure, adaptivity and fast response. The proposed controller
is evaluated on a multi-machine power system under different operating conditions and disturbances
to demonstrate its effectiveness and robustness. Eigenvalue analysis shows that the undamped
modes are sensitive to excitation control while speed governors have little influence on damping.
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1. INTRODUCTION

Power system stabilizers are used to generate
supplementary control signals for the excitation
system in order to damp the low frequency
inter-area and intra-area oscillations [1].
A conventional power system stabilizer is widely
used in existing power systems and has made a
contribution in enhancing power system dynamic
stability. The parameters of CPSS are determined
based on a linearized model of the power system
around a nominal operating point where they
can provide good performance. Since power
systems are highly nonlinear systems, with
configurations and parameters that change with
time, the CPSS design based on the linearized
model of the power system cannot guarantee
its performance in a practical operating
environment.
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To improve the performance of CPSS’s,
numerous techniques have been proposed for
their design, such as using intelligent
optimization methods (simulated annealing,
genetic algorithm, tabu search) [2]-[4], fuzzy-
neural networks [5]-[6] and many other
nonlinear control techniques. The intelligent
optimization algorithms are used to determine
the optimal parameters for CPSS by optimizing
an eigenvalue based cost function in an offline
mode. Since the method is based on a linearized
model and the parameters are not updated online,
they lack satisfactory performance during
practical operation. The rule-based fuzzy logic
control methods are well known for the difficulty
in obtaining and adjusting the parameters of the
rules especially online. Recent research indicates
that more emphasis has been placed on the
combined usage of fuzzy systems and other
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technologies such as neural networks to add
adaptability to the design [7, 13, 14]. Currently,
most of the nonlinear control based methods
use simplified models to decrease complexity
of the algorithms. Considering the complexity
of practical power systems, more realistic model
with less computation time is required for
effective robust control over a wide range of
operating conditions.

As power systems are nonlinear, and prone to
variations in its operating states over a wide
range, the conventional PSS cannot provide
optimal performance as the operating point
changes. The fusion of ideas from fuzzy control
and neural networks had acknowledged a
significant role in improving controller
performances. Fuzzy logic has proven effective
for complex, nonlinear and imprecisely defined
systems. The common bottleneck in fuzzy logic
is the derivation of fuzzy rules and the parameter
tuning for the controller. The neural networks
have powerful learning abilities, optimization
abilities and adaptation. There are many research
works focusing on partitioning of the input
space, to determine the fuzzy rules and
parameters evolved in the fuzzy rules for a single
fuzzy system [27], [28]. As it is well known,
the curse-of-dimensionality is an unsolved
problem in the fields of fuzzy and/or neurofuzzy
systems [30]. The fuzzy logic and neural
networks can be integrated to form a
connectionist Adaptive Hierarchical network
based Fuzzy logic controller. Some of the
problems mentioned above are partially solved
by several researchers working in the
hierarchical fuzzy systems domain [16]–[24],
[26], [32], and [33]. Torra [15] has summarized
the related recent researches. As a way to
overcome the curse-of-dimensionality, it was
suggested by Brown et al. [24] to arrange several
low-dimensional rule base in a hierarchical
structure, i.e., a tree, causing the number of
possible rules to grow in a linear way according
to the number of inputs. A method was proposed
to determine automatically the fuzzy rules in a
hierarchical fuzzy model [29]. Rainer [22]
described a new algorithm which derives the
rules for hierarchical fuzzy associative memories

that were structured as a binary tree. Wang and
Wei [18], [19], [25] proposed specific
hierarchical fuzzy systems and its universal
approximation property were proved. The
approximation capabilities of hierarchical fuzzy
systems were further analyzed by Zeng and
Keane [31]. The proposed Adaptive Hierarchical
Neuro-Fuzzy based PSS (AHNFPSS) is designed
for a multimachine machine power system
network.

The excitation voltage deviation of AVR,
generator speed deviation and its derivative are
taken as inputs to the controller. This paper also
presents the results of a stability investigation
of a power system by coordinated power system
stabilizers (PSS). The effects of the existing
controllers on system stability are studied. If no
PSS’s are present, the damping of various swing
modes in the system will be very poor and low
frequency oscillations present.

The power system model is described in 2.0.
The design of the coordinated adaptive
Hierarchical neuro-fuzzy network controller is
described in 3.0. The implementation process
and simulation studies are described in 4.0.

2.0 POWER SYSTEM MODELING

For any electric power system dynamic study, a
proper mathematical model must be chosen.
There are only a limited number of system
components important to the dynamic study: the
synchronous generator, the governor and the
excitation system.

2.1 Synchronous Generator

The three armature phase windings on the stator
of the synchronous machine are replaced by two
equivalent armature windings, a d-winding on
the d-axis and a q-winding on the q-axis by
Park’s transformation. The models mainly differ
in the number of windings considered along d
and q-axis. The third order model [8] represented
by the following equations is used for the
representation of synchronous generator.
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(1)

(2)

(3)

and the auxiliary equations are

(4)

(5)

2.2 Modeling of Excitation System

The excitation system is considered to be of
continuously acting IEEE Type-1 excitation
system [8]. The CPSS consists of two phase-
lead compensation blocks, a signal washout
block, and again block. The input signal is the
rotor speed deviation ∆ω. The block diagram of
the CPSS is shown in Fig.1

term. The final output is the weighted average
of each rule’s output. The universe of discourse
for the input-output variables is normalized and
the gain parameters chosen based on input-
output space are

∆E
fd

gain=1.0, ∆ωgain=1.0,  gain=0.08,
u

E
 gain=0.1.

The architecture of the AHNFPSS sensing ∆E
fd
,

∆ω and  is shown in Fig. 2A where node
functions in each layer are as described below.

3.0 ADAPTIVE HIERARCHICAL NEURO-
FUZZY PSS

The Adaptive Hierarchical Network Based Fuzzy
Logic PSS is designed with three inputs,
excitation voltage deviation of AVR∆E

fd
, the

generator speed deviation ∆ω and its derivative
, and one control output (u

E
). The training

data is viewed to be very complex hence seven
linguistic variables for each input variable were
used to get the desired performance. The
linguistic variables are specified by Gaussian
membership functions and as a result 49+49
rules are devised. The rule-base contains the
fuzzy IF-THEN rules of sugeno’s first order type
[9] in which the output of each rule is a linear
combination of input variables plus a constant

FIG. 1 BLOCK DIAGRAM OF CPSS

FIG. 2A ARCHITECTURE OF AHNFPSS

3.1 Layer 1

Each node in this layer is an adaptive node
performing Gaussian membership function.

where i=1, 2, 3, j=1, 2...7

x
i
, is the input to this layer (∆ω, ,∆E

fd
) and c

ij
,

is the center of the membership function.

FIG. 2B ONE TREE STRUCTURE OF AHNFPSS
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3.2 Layer 2

Every node in this layer represents the firing
strength of the rule.

i,j=1…7.

Eventually the nodes of this layer perform fuzzy
AND operation.

3.3 Layer 3

The nodes of this layer calculate the normalized
firing strength of each rule.

i,j=1…49.

w
i
 , w

j
 – firing strength of a rule.

3.4 Layer 4

The nodes in this layer output the weighted
consequent part of the rule table.

i,j=1,…49

where {p
i
, q

i
, r

i 
} is the parameter set of this

node.

3.5 Layer 5

The single node in this layer computes the
overall output as the summation of all the
incoming signals.

i,j=1…49.

where O
5, i

 , O
5, j

 denote the output of the node
in layer 5.

The learning algorithm for the connectionist
network structure consists of two separate stages

of a learning strategy, which combines
unsupervised learning and supervised gradient-
descent learning procedure. In phase one a self-
organized learning scheme is used to locate
initial membership functions and to find the
presence of fuzzy logic rules. In phase two a
supervised learning scheme is used to optimally
adjust the parameters of membership functions
for desired output. The back-propagation
algorithm is used for the supervised learning.
To initiate the learning scheme, training data
and the desired or guessed coarse of fuzzy
partition (i.e., the size of the term set of each
input/output linguistic variable) must be
provided from the outside world [9].

The AHNFPSS training is done assuming that
there is no expert available and the initial values
of the membership functions parameters are
equally distributed along the universe of
discourse and all consequent parts of the rule
table set to zero. The AHNFPSS starts from zero
output and during training it gradually learns
the rules and functions as close to the desired
controller. Thus during training the network
structure update membership functions and rule
base parameters according to the gradient
descent update procedure.

The AHNFPSS was trained by data created from
power system stabilizers designed for various
operating conditions in which the generator
output ranging from 0.2 to 1.0 p.u and power
factor ranging from 0.85 lead to 0.4 lag. The
wide spectrum of possible disturbances used for
the training are: reference voltage and infinite
bus voltage disturbances in the range of -0.05
p.u to 0.05 p.u, torque variations from -0.15 p.u
to 0.15 p.u, three phase fault transients,
transmission line with different line reactance
disturbances, different machine inertia
disturbances and one transmission line outage.
A total of 4512 input-output data pairs are
created for the training of AHNFPSS.

4.0 SIMULATION STUDIES

The performance of the designed AHNFPSS was
investigated on a power system model of the
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three machine nine bus system [10] with third
generator considered as the infinite bus. A
single-machine part of the schematic diagram
of the multi-machine system used for simulation
studies is shown in Fig. 3. The Simulink and
Fuzzy Logic toolbox of MATLAB [11, 12] are
used for modeling the power system and
designing the AHNFPSS respectively. A number
of studies have been performed to investigate
the effect of PSS designed by the Adaptive
Network Based Fuzzy Logic control approach.
The control output for both the AHNFPSS and
CPSS was limited to 0.1 p.u.

disturbance is large enough to cause the system
to operate in the non-linear region. System
performance under such non-linear condition is
shown in Fig. 5. It can be seen that the
AHNFPSS damps out the oscillations very
efficiently.

Leading pf Load test: When the generator is
operating at a leading power factor, the situation
is much more difficult because the stability
margin is reduced. However, in order to absorb
the capacitive charging current in a high voltage
power system, it may become necessary to
operate the generator at a leading power factor.
It is therefore desirable that the controller be
able to guarantee stable operation of the
generator under leading power factor condition.

With the generator operating at an active power
of 0.5 p.u and reactive power 0.9 lead, a
0.01 p.u step decrease in torque was applied.

4.1 Dynamic Stability Studies

Load test: With the generator operating at an
active power of 0.4 p.u and a reactive power of
0.8 p.u lag, a 0.01 p.u step increase in input
torque reference was applied in all the machines.
The disturbance is large enough to cause the
system to operate in the nonlinear region. System
response without PSS and with the CPSS and
AHNFPSS under these conditions was shown
in Fig. 4. The system without stabilizer is highly
oscillatory. Although the CPSS is effective in
damping the oscillations, the AHNFPSS settles
the oscillations smoothly and quickly.

Light load test: With the generator working
under a light load condition, 0.2 p.u active power
and reactive power of 0.8 p.u lag, a 0.02 p.u
step decrease to torque  was applied. The

FIG. 4 SIMULATION RESULTS FOR LOAD TEST AT AN
ACTIVE POWER OF 0.4 P.U AND REACTIVE
POWER 0.8 P.U A 0.01 P.U STEP INCREASE IN
INPUT TORQUE IN GENERATOR 1

FIG. 3 SYSTEM MODEL FOR SIMULATION STUDIES
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The results given in Fig. 6 show that the
oscillation of the system is damped out rapidly
by the AHNFPSS.

4.2 Transient Stability Studies

The behaviour of the AHNFPSS under transient
conditions was verified by applying a three phase
fault. At an operating condition of active power
0.6 p.u and reactive power 0.8 lag condition a
three phase to ground short circuit is applied at
the middle of one transmission line, cleared
100ms later by the disconnection of the faulted.
The response is shown in Fig. 7. Results show
that AHNFPSS help the system to reach the new
operating point and damp out the oscillations
very quickly.

FIG. 5 SIMULATION RESULTS FOR LIGHT LOAD TEST
AT AN ACTIVE POWER OF 0.2 P.U AND REACTIVE
POWER 0.8 P.U A 0.02 P.U STEP DECREASE IN
INPUT TORQUE IN GENERATOR 2

FIG. 6 SIMULATION RESULTS FOR LEADING POWER
FACTOR LOAD TEST AT AN ACTIVE POWER OF
0.5 P.U AND REACTIVE POWER 0.9 P.U A 0.01 P.U
STEP DECREASE IN INPUT TORQUE IN
GENERATOR 1

FIG. 7 SIMULATION RESULTS FOR TRANSIENT
STABILITY THREE PHASE FAULT TEST AT AN
ACTIVE POWER OF 0.6 P.U AND REACTIVE
POWER 0.8 P.U AND FAULT CLEARED AFTER
100MSEC IN GENERATOR 2
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4.3 Different Oscillation Mode Test

In this test different machine inertia and
transmission line impedance were used to
introduce different oscillation modes. Tests were
conducted for machine inertia, H, changing
from 6.4 s to 10.0 s, while the machine was
operating at 0.95 pu power and 0.95 reactive
power lag. A disturbance of 0.01 pu increase in
mechanical input torque was applied to the
generator 1. The oscillation frequency of the
system varies with different machine inertias.
System response with CPSS and AHNFPSS is
shown in Fig. 8.

The extent of the coupling of the generator with
the infinite bus can be simulated with the change
of transmission line impedance. The likelihood
of instability of the exciter mode emerges if
the transmission line has greater impedance.
The transmission line impedance was changed
from 0.361 pu to 0.5 pu to simulate tightly
and loosely coupled systems. The response of
the system with both CPSS and AHNFPSS is
shown in Fig. 9. It can be seen from Figs. 4-9
that the AHNFPSS offers a very robust
performance.

FIG. 9 SIMULATION RESULTS FOR DIFFERENT
TRANSMISSION LINE REACTANCE TEST AT AN
ACTIVE POWER OF 0.9 P.U AND REACTIVE
POWER 0.95 P.U A 0.012 P.U STEP INCREASE IN
INPUT TORQUE REFERENCE IN GENERATOR 2.

4.4 Eigenvalue Analysis

The effectiveness and robustness of the proposed
AHNFPSS over a wide range of loading

FIG. 8. SIMULATION RESULTS FOR DIFFERENT
MACHINE INERTIA TEST IN WHICH H CHANGING
FROM 6.4S TO 10S AT 25 S IN GENERATOR 1 WITH
AN ACTIVE POWER OF 0.95.U AND REACTIVE
POWER 0.95 P.U LAG.
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conditions are considered. Table 1 shows the
eigenvalues, frequencies of swing modes of the
participating generators. The third order model
is considered and the mechanical and electrical
modes are considered for stability analysis.
Accordingly , , e

q
’, E

FD 
are taken as state

variables for uncontrolled system and eigen
analysis was done. In the analysis the , 
are taken for mechanical mode analysis and e

q
,

E
FD 

are taken for electrical mode analysis. So
totally four eigen values are considered in
uncontrolled mode. In PSS controlled system,
in addition to the above system states, two state
variables are considered the output from the wash
out circuit of the PSS block and the compensator
block. So totally six state variables are
considered and as such eigen analysis was done.

-0.019649 + 5.5135i -0.055556 + 7.4902i
-0.019649 -5.5135i -0.055556 - 7.4902i
-10.187 +  30.384i -10.189 + 29.132i
-10.187 - 30.384i -10.189 - 29.132i

-5.2714 +14.254i -7.0511 + 28.824i
-5.2714 -14.254i -7.0511 -  28.824i
-1.2476 +10.147i -1.1572 + 10.229i
-1.2476 - 10.147i -1.1572 - 10.229i
-0.1215 -0.1316
-8.164 -7.521

-7.9744 + 30.044i -7.0511 +  28.824i
-7.9744 -  30.044i -7.0511- 28.824i
-1.6696 + 5.027i -2.2753 + 6.7059i
-1.6696 -  5.027i -2.2753 - 6.7059i
-0.34535 -0.34106
-11.114 -11.828

TABLE 1

STABILITY ANALYSIS
System Generator 1 Generator 2

Eigen
values
without

PSS

Eigen
values
with

CPSS

Eigen
values
with

AHNFPSS

APPENDIX I

STUDY SYSTEM

APPENDIX II

LIST OF SYMBOLS

δ : Rotor angle

ω : Rotor angular velocity

E
fd

: Exciter output voltage

M : Inertia constant

T
m

: Mechanical torque

T
e

: Electrical torque

T
d

: Damping torque

Tdo’ : d-axis open circuit time constant

: d-axis transient reactance

x
d

: d-axis component of synchronous
reactance

x
q

: q-axis component of synchronous
reactance

id,iq : d and q axis currents

Vt : Generator terminal voltage

5.0 CONCLUSION

To overcome the drawbacks of conventional
power system stabilizers, an adaptive
coordinated Hierarchical neuro-fuzzy network
control based power system stabilizer design is
presented in this paper. The proposed method is
evaluated on a 9-bus three machine power
system. The design of the proposed controller
is based on only the speed deviation of the
generator. Therefore, the computations involved
in the network design are minimal. This is
desirable for practical hardware implementation

on the power station platforms. Simulation
results for different kinds of disturbances
and operating conditions demonstrate the
effectiveness and robustness of the controller.
Such a nonlinear adaptive PSS will yield better
and fast damping under small and large
disturbances even with changes in system
operating conditions. Better and fast damping
means that generators can operate more close to
their maximum generation capacity thus
ensuring that generators remain stable under
several faults such as three phase short circuits.
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