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The recent advances in power electronics 
technology have led to the development of 
FACTS controllers which are effective candidates 
for providing secure loading, power fl ow control 
and voltage control in transmission systems. 
These controllers when placed effectively with 
supplementary stabilizing loops are found to 
be effective for damping out power system 
oscillations was discussed in [2]. 

Presents the basic static Var compensator (SVC) 
[3] control strategies for enhancing the dynamic 
and transient stability of a simple two machine 
system. 

The modeling of SVC for transient stability 
studies were discussed [4]. Proposed a optimal 
location method for SVC using participation 
factor analysis [5].

1.0 INTRODUCTION

As power systems became interconnected, 
areas of generation were found to be prone to 
electromechanical oscillations. These oscillations 
have been observed in many power systems 
worldwide. With increased loading conditions 
and interconnections the transmission system 
became weak and inadequate, also load 
characteristics added to the problem causing 
spontaneous oscillations. These oscillations may 
be local to a single generator or a generator 
plant (local oscillations, 0.8 – 2 Hz), or they may 
involve different groups of generators widely 
separated geographically (inter area oscillations, 
0.2–0.8 Hz). These uncontrolled electromechanical 
oscillation may lead to total or partial power 
interruption [1].
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The dynamic behavior of voltage source 
converter based FACTS devices for simulation 
studies was discussed in [6]. These devices 
were modeled as current injections for dynamic 
analysis.

This paper proposes a Residue factor to fi nd the 
location of SVC in multi-machine system. The 
proposed residue factor was based on the relative 
participation of the parameters of SVC controller 
to the critical mode was discussed [2]. The 
electrical circuit dynamics of the synchronous 
machines are modeled using the standard two 
axis model [8]. The following section presents 
the mathematical modeling details of the FACTS 
devices enhancement of dynamic stability.

This paper also provides a generalized method of 
developing small signal model of power system 
with shunt connected FACTS devices. The 
electrical circuit dynamics of the synchronous 
machines are modeled using the standard two 
axis model. This paper also proposes an optimal 
location method for maximizing the damping 
ratio of the swing mode in the power system.

The following section presents the mathematical 
modeling details of the FACTS devices and the 
optimal tuning procedure for enhancement of 
dynamic stability.

2.0 MATHEMATICAL MODELING

The linearized state equations in per unit form are 
given below [8].
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where the state variables are 

E’d - direct axis component of voltage behind 
transient reactance.

E’
q- quadrature axis component of voltage behind 

transient reactance.

ω - Angular velocity of rotor

δ – Rotor angle.

2.1 Modeling of shunt FACTS controller

For the purpose of developing the small signal 
stability program all the series connected FACTS 
devices are represented as current injections in two 
nodes of the network [7]. However, if the device 
is a shunt connected device then the injections are 
confi ned only to one node (Figure 1).  

FIG. 1 CURRENT INJECTION MODEL OF SVC.

The change in bus voltage (ΔVS) due to shunt 
connected FACTS device in the network is 
expressed in terms of the state variables from the 
last row of the matrix equation given by
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2.2 SVC Modeling

The SVC dynamic model used for linear analysis 
is shown in Figure 2. With an additional stabilizing 
signal, supplementary control superimposed on 
the voltage control loop of an SVC can provide 
damping of system oscillations [3].

FIG. 2 DYNAMIC MODEL OF SVC.

From the matrix equation (2), the change in 
network current with the introduction of SVC in 
the d-q reference frame is given below
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The linearized state equations of the SVC for 
small signal analysis is given below 
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The differential equations connected with the 
washout and lead lag fi lter are [9]
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Substituting (3) and (4) in the differential of 
the synchronous machine (1) and SVC dynamic 
equations (5–7) yields the system state space 
matrix.

The complete set of state variables describing 
the dynamics of the synchronous machine with 
the inclusion of the SVC in the network is as 
follows.

T
L L

' 'x = [E , E , , , B , X , X ]wqd ω δ            .... (8)

3.0 ALGORITHM FOR FINDING THE 
EFFECTIVE LOCATION

The critical steps for the small signal stability 
evaluation in multi-machine power systems with 
FACTS devices are listed below

Step 1: 
Get the transmission line data, bus data and 
generator data for the given system and form 
the bus admittance matrix from the given 
transmission line data.

Step 2: 
Eliminate all the nodes except for the internal 
generator nodes and FACTS connected 
nodes. For shunt connected devices, there is 
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only one node whereas for series connected 
devices, there are two nodes.

Step 3: 
Obtain the Yred matrix from the reduced 
network,

-1Y = Y - (Y (Y ) Y )    ... (9)nn nr rr rnred × ×

Step 4: 
For the formation of state space model, the 
initial conditions are computed in advance. 
(E`qo, E`do, I`qo, I`do).

Step 5: 
Formulate the differential equations for pE’q, 
pE’d, pδ, pω with additional state variables 
due to FACTS devices as 

.
x = [A] x  after 

eliminating the algebraic equations. 

Step 6: 
From the state space matrix, the eigen values 
are to be calculated and damping ratio are 
calculated for the electromechanical modes 
( = - ± j )λ σ ω  as

2 2= - / ( +  ς σ σ ω                             .... (10)

Step 7: 
Compute the participation matrix from 
the right and left eigen vectors of the 
A-matrix. 

3.0 SMALL SIGNAL STABILITY 
ENHANCEMENT AND 
DETERMINATION OF EFFECTIVE 
LOCATION

The test system considered for small signal 
stability investigation is the 3 Machine 9 Bus 
system [8] (Figure 3). The 3 machine test system 
is operating with the load at bus 5 carrying 125 
MW, bus 6 carrying 90 MW and bus 8 supplying 
100 MW. The real power generations are 71.3, 
163 and 85 in generators 1, 2 and 3 respectively.

Eigen value analysis results of the 3 Machine 9 
Bus system around the operating state mentioned 
above is displayed in Table 1.For verifi cation of 
results Machine 1 is considered as classical model 
and Machines 2, 3 as two axis models.

FIG. 3 3 MACHINE 9-BUS SYSTEM.

TABLE 1
EIGEN VALUE ANALYSIS FOR 3 MACHINE 

9-BUS SYSTEM

Eigen values Damping 
ratio

Associated 
states

–0.0026640944118 
± 0.034642495927i 0.07345 δ13, ω3

–0.0006213675132 
± 0.02297764868i 0.02654 δ12, ω2

It can be observed that damping ratios of the 
swing modes (local modes) are poor (0.07345 
and 0.02654). The eigen value calculations match 
with the results given in the ref. [8].

Table 2 displays the effect of FACTS stabilizer 
on the dynamic stability of the 3 machine 9 bus 
system. For this analysis all the machines are 
modeled using the two axis model, to accurately 
model the small signal behavior of the system. 
The shunt connected FACTS device (SVC) is 
located at load buses. The data for the FACTS 
stabilizers are listed in the appendix.

TABLE 2
EIGEN VALUE ANALYSIS –EFFECT OF FACTS 

STABILIZERS
Without 
damping 
controller

With SVC 
(atbus-5)

With SVC 
(at bus-6)

With SVC 
(at bus-8)

–0.00243 
± 0.03444i

ζ = 0.07345

–0.00232 
± 0.02456i

ζ=0.09432

–0.00229 
± 0.02244i

ζ=0.10188

–0.00167 
± 0.01548i

ζ=0.10751
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–0.00053 
± 0.02281i

ζ=0.0265

–0.00060 
± 0.01058i

ζ=0.0575

–0.00063 
± 0.01197i

ζ=0.0531

–0.00099 
± 0.01155i

ζ=0.0854

From the table it can be observed that with SVC 
in the network the damping ratio of the modes 
improve when it is located at bus-8.

4.0 RESIDUES

Let us start from the mathematical model a 
dynamic system expressed in terms of a system 
of nonlinear differential equations:

x = F(x, t)                                           .... (11)

If this system of non-linear differential equations 
is linearized around an operating point of interest 
x = x0, it results in:

x = A x(t)Δ Δ                                       .... (12)

Assume that an input u(t) and an output y(t) of 
the linear dynamic system (12) have defi ned:

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

                              ... (13)

Considering (13) with single input and single 
output (SISO) and assuming D = 0, the open loop 
transfer function of the system can be obtained 
by:

y(s)G(s) = u(s)

       = C(sI-A)-1B                                .... (14)

The transfer function G(s) can be expanded in 
partial fractions of the Laplace transform of y in 
terms of C and B matrices and the right and left 
eigen vectors as:

.... (15)
RC BN N ijki iG(s) =(s ) (s - )i 1 i=1i i

ψφ
= ∑ ∑− λ λ=

where,

Rijk is the residue associated with ith mode, jth 
output and kth input. Rijk can be expressed as:

V W .... (16)R = C Bijk j i i k

vi and wi denote the right and left eigen vectors 
associated with the ith critical electromechanical 
mode. This can be expressed in terms of 
mode controllability and observability. The 
controllability of mode i from the kth input is 
given by

CI = w B .... (17)ik i k

The measure of mode observability of mode i 
from output j is given by

Obsv = C vij j i                                  .... (18)

It is clear that:

V WR = C B = obsv contijk j i i k ij ik×
   

... (19)

Each term in the denominator, Rijk, of the 
summation is a scalar called residue. The residue 
Rijk of a particular critical electromechanical mode 
i gives the measure of that mode’s sensitivity to 
a feedback between the output y and the input u; 
it is the product of the mode’s observability and 
controllability.

For that critical electromechanical mode of 
the interest, residues at all locations have 
to be calculated. The largest residue then 
indicates the most effective location of FACTS 
device.

5.0 RESULTS

The effectiveness of the proposed method was 
tested on WSCC 3 machine, 9-bus system. 
The results for the system are presented as 
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follows:

 The system consists of 3 generators, three 
fi xed admittance loads and 6 branches with 
generator 1 taken as reference generator. The 
equivalent power system of WSCC 3 machine 
9 bus system is depicted in Figure 3.

 It is observed from Table 3 that load bus 8 
has the maximum residue factor value. 
Thus, bus 8 is the most effective location for 
placement of SVC device. The eigen value 
analysis results computed were also verifi ed 
using the linear simulations in the industry 
standard EUROSTAGTM software package.

TABLE 3
RESIDUE FACTOR AT DIFFERENT LOAD BUSES

Location of SVC bus Residue factor
5 0.02394
6 0.03143
8 0.08916

6.0 CONCLUSION

This paper presented the mathematical model for 
locating a shunt connected FACTS device for 
small signal stability enhancement in a multi-
machine power system. Much of the earlier work 
relevant to small signal stability enhancement 
using FACTS stabilizers has used the classical 
model of the synchronous machine neglecting 
the effect of electrical circuit dynamics. This 
paper has presented a systematic and generalized 
approach for small signal modeling and a method 
called ‘Location index’ for the location of FACTS 
device.  It should be noted that this paper makes 
use of local feedbacks as stabilizing signals for the 
location of FACTS based damping controllers. 

APPENDIX

The data for FACTS devices are given below 
in p.u.

R  :  0
X : 0.025
RC : 0.077
C :  0.2592
K : 10

T1 : 1.1
Kd : 10
T2 : 0.05
KMac : 1
TMac : 0.01
Kp : 10
KI : 1
KMdc  : 10
TMdc  : 0.01

REFERENCES

[1] Kundur P. “Power system control and 
stability”, McGraw-Hill, Newyork, 1994.

[2] Haque M H. “Optimal location of shunt 
FACTS devices in long transmission lines”, 
IEE Proc. on Generation Transmission and 
Distribution, Vol. 147, No. 4, pp. 218–222,  
2000.

[3] Hammad A E. “Analysis of power system 
stability enhancement by Static Var 
compensators”, IEEE Trans. on Power 
Systems, Vol.1, No. 4, pp. 222–228, 1986.

[4] Keerthivasan K, Sharmila Deve V, Jovitha 
Jerome and Ramanujam R. “Modeling of 
SVC and TCSC for power system dynamic 
simulation”, IEEE 7th International Conf. 
Power Eng., Vol. 2, pp. 696–700, 2005.

[5] Mustafa M W and Magaji N. “Optimal 
location of static Var compensator device 
for damping oscillations”, American J. of 
Engineering and Applied Sciences, Vol. 2, 
No. 2, pp. 353–359, 2009.

[6] Freitas W and Morelato A. “Generalized 
current injection approach for modeling 
of FACTS in power system dynamic 
simulation”, IEEE Seventh International 
Conf. AC-DC Power Transmission, pp. 175–
180, 2001.

[7] Anderson P M and Fouad A A. “Power 
system control and stability”. John Wiley & 
Sons, Inc., Publication, 2003.

[8] Ramanujam R. “Power system dynamics-
analysis and simulation”, PHI Learning 
Private Limited, 2009.


