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1.0	 INTRODUCTION

World demand for energy is projected to more 
than double by 2050 and to more than triple by the 
end of the century incremental improvements in 
existing energy networks will not be adequate to 
supply this demand in a sustainable way Finding 
sufficient supplies of clean energy for the future 
is one of society’s most daunting challenges.

The supply and demand of energy is determining 
the course of global development in every sphere 
of human activity Sufficient supplies of clean 
energy are intimately linked with global stability, 
economic prosperity and quality of life Finding 
energy sources to satisfy the world’s growing 
demand is one of the society’s foremost challenges 
for the next half century The importance of this 
pervasive problem and the perplexing technical 
difficulty of solving it require a concerted national 
effort marshalling our most advanced scientific 
and technological capabilities.

Solar forecasting is a stepping stone to these 
challenges solar power forecasting depends on 
the factors like knowledge of the sun’s path, the 
atmosphere’s condition, the scattering process and 
the characteristics of a solar energy plant which 
utilizes the sun’s energy to create solar power 
solar photovoltaic systems transform solar energy 
into electric power. The output power depends 
on the incoming radiation and on the solar panel 
characteristics photovoltaic power production 
is increasing nowadays  forecast information is 
essential for an efficient use, the management of 
the electricity grid and for solar energy trading.

Various solar forecasting research activities get 
motivated due to the factors that accurate solar 
forecasting techniques improves the quality of 
the energy delivered to the grid and minimize 
the additional cost associated with weather 
dependency.
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solar forecasts on multiple time horizons play 
an important role in storage management of PV 
systems, control systems in buildings, hospitals, 
schools etc, and control of solar thermal power 
plants, as well as for the grids’ regulation and 
power scheduling It allows grid operators to 
adapt the load in order to optimize the energy 
transport, allocate the needed balance energy from 
other sources if no solar energy is available, plan 
maintenance activities at the production sites and 
take necessary measures to protect the production 
from extreme events.

On the basis of the application and the 
corresponding time scale required, various 

forecasting approaches are introduced For time 
horizon from several minutes up to a few hours ie, 
for very short term time scale, time series models 
using on-site measurements are adequate Intra-
hour forecasts with a high spatial and temporal 
resolution may be obtained from ground-based 
sky imagers For a temporal range of 30 minutes 
up to 6 hours satellite images based cloud 
motion vector forecasts show good performance 
Grid integration of PV power mainly requires 
forecasts up to two days ahead or even beyond 
These forecasts are based on numerical weather 
prediction (NWP) models Kostylev and Pavlovski 
[1] gave detailed solar forecast time scales and 
their corresponding granularities.

FIG. 1	 RELATIONSHIP BETWEEN HORIZONS, MODELS AND THEIR ACTIVITIES

For solar forecasting different types of solar 
power systems need to be distinguished. For solar 
concentrating systems (concentrating solar thermal 
or concentrating PV, CPV) the direct normal 
incident irradiance (DNI) must be forecast Due 
to non-linear dependence of concentrating solar 
thermal efficiency on DNI and the controllability 
of power generation through thermal energy 

storage (if available), DNI forecasts are especially 
important for the management and operation of 
concentrating solar thermal power plants Without 
detailed knowledge of solar thermal processes 
and controls, it is difficult for third parties (solar 
forecast providers) to independently forecast 
power plant output.
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On the other hand, CPV production is highly 
correlated to DNI DNI is impacted by phenomena 
that are very difficult to forecast such as cirrus 
clouds, wild fires, dust storms, and episodic air 
pollution events which can reduce DNI by up to 
30%in comparison to cloud-free days Water vapor, 
which is also an important determinant of DNI, 
is typically forecast to a high degree of accuracy 
through existing NWP Major improvement in 
aerosol and satellite remote sensing are required 
to improve DNI forecasts.

For non-concentrating systems (such as most 
PV systems), primarily the global irradiance (GI 
= diffuse + DNI) on a tilted surface is required 
which is less sensitive to errors in DNI since a 
reduction in clear sky DNI usually results in an 
increase in the diffuse irradiance Power output of 
PV systems is primarily a function of GHI For 
higher accuracy, forecast of PV panel temperature 
are needed to account for the (weak) dependence 
of solar conversion efficiency on PV panel 
temperature.

2.0	 SOLAR FORECASTING 
METHODOLOGIES

Broadly solar power forecasting methods are 
classified into three categories: physical methods, 
statistical methods and hybrid methods.

2.1	 Physical Methods.

The physical method is based on the Numerical 
Weather Prediction (NWP), cloud observations by 
satellite or Total Sky Imager (TSI) or atmosphere 
by using physical data such as temperature, 
pressure, humidity and cloud cover.

2.1.1	Cloud Imagery and Satellite Based Models

The satellite and cloud imagery based model is a 
physical forecasting model that analyzes clouds 
The satellite imagery deals with the cloudiness 
with high spatial resolution. The high spatial 
resolution satellite has the potential to derive the 
required information on cloud motion. The cloud 
motion helps in locating the position of cloud 

and hence solar irradiance can be forecasted The 
parameters which have the most influence on 
solar irradiance at the surface are cloud covers 
and cloud optical depth The processing of 
satellite and cloud imageries are done in order 
to characterize clouds and detect their variability 
and then forecast the GHI up to 6 hours ahead 
This model works by determining the cloud 
structures during earlier recorded time steps The 
structure of the clouds and their positions helps in 
predicting solar irradiance [2].

2.1.1.1	Physical Satellite Models

The basis of physical satellite models for the 
purpose of solar irradiance forecasting is totally 
dependent on the interaction between the 
atmospheric components like gases and aerosols 
and the solar radiation These physical interactions 
are modelled by way of RTMs Therefore, 
physical satellite models are said to be improved 
RTM based clear sky models. This improvement 
is through the addition of information regarding 
current atmospheric conditions The account 
of atmospheric conditions is through the 
measurement of local meteorological data. This 
eliminates the need for solar irradiance data at 
the surface, however, because these models need 
to convert digital counts from satellite based 
radiometers into a corresponding flux densities, 
accurate and frequent calibration of the instrument 
is required [3] Physical satellite models cover 
four sub models in it.

A)	 Gautier-Diak-Masse Model

One of the earliest physical models was developed 
by Gautier, Diak and Masse (GDM) in 1980 [4]
In this model clear and cloudy conditions are 
considered separately To differentiate a given 
pixel as clear and cloudy brightness threshold is 
obtained by selecting a minimum value at every 
pixel for every hour from the past several days. 
One shortcoming of the original GDM model 
was the absence of variations in terrestrial albedo 
with changing solar zenith angle Raphael and 
Hay [5, 6] included the T-minimum brightness 
determination [7] in order to correct for the 
previous consideration.
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In GDM clear sky RTM model the parameters 
which are used as input are: reflection coefficient 
for diffuse radiation; these coefficients were 
calculated using the results from Coulson [8, 9]; 
the absorption coefficient for slant water vapour 
path and the solar zenith angle; these absorption 
coefficients used the expression from Paltridge 
[10] Other parameters include the atmospheric 
albedo as a function of the irradiance received 
by the satellite  Enhancements and improvements 
to GDM model includes absorption of ozone and 
aerosols [11] in addition to multiple reflections 
by [12].

In GDM cloudy sky RTM model absorption is 
considered in terms of upwelling and downwelling 
This upwelling and downwelling are terms used 
for absorption above and below the clouds 
respectively The parameters used as inputs for 
cloudy sky RTM are: cloud albedo as a function 
of the absorption of short wave radiation above 
and below the clouds, and cloud absorption 
coefficient estimated on the basis of the satellite’s 
measurement of the visible brightness of the 
cloud The relationship between measured visible 
brightness and absorption is given by Gantier in 
1990 [4].

B)	 Marullo-Dalu-Viola Model

This model is the re-evaluation of the GDM 
model by using the data for the METEOSAT 
data for the Italian peninsula [13] This model 
is similar to GDM model where clear sky and 
cloudy sky are considered separately The only 
difference is in the name clear sky and cloudy 
sky are termed as standard atmosphere and real 
atmosphere respectively

The MDV “standard atmosphere” model is similar 
to GDM clear sky model In this, information 
regarding temperature profile of the atmosphere, 
water vapour content and a three layer aerosol 
column are considered [14] A reflecting non-
absorbing layer which accounts for the presence 
of aerosols in atmosphere is added in input 
parameters apart from all the rest used in GDM 
clear sky model In MDV model planetary albedo 

for a standard atmosphere was assumed to be 
uniform for the region varying only with solar 
zenith angle Planetary albedo for a standard 
atmosphere was approximated though the use of 
regional clear sky data and assumed to be uniform 
for the region and varied only with solar zenith 
angle.

Any significant deviation from the standard 
atmosphere model was assumed to be a 
consequence of atmospheric particle loading The 
atmospheric loading in the real atmosphere was 
resolved by a thin reflecting non-absorbing layer 
assumed to be higher than the particles responsible 
for scattering in the standard atmosphere.

C)	 Moser-Raschke Model

This model also used METEOSAT images for 
estimating ground level irradiance [15] The 
authors used the RTM developed by Kerschgens 
[16] which was more complex than the previous 
models The only improvements in MR method are 
addition of parameters for accurately describing 
the atmospheric state and infrared data so as to 
estimate the cloud top height

The input parameters include the solar zenith 
angle, cloud top height, optical depth of the clouds, 
terrestrial albedo, boundary layer structure, 
climatological profiles of temperature, pressure, 
humidity, ozone concentration and cloud droplet 
size distribution One significant result of this 
model was the demonstration that clouds, rather 
than aerosols, have a greatest impact on irradiance 
reaching ground level.

D)	 Dedieu-Deschamps-Kerr Model

This model is different from GDM and MDV 
model where clear sky and cloudy sky methods 
were considered separately DDM model [17] used 
a single equation valid for both clear and cloudy 
conditions For using a single equation clear sky 
model was combined with the model having only 
the effects of clouds on solar irradiance.
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The input parameters include a sky transmissivity 
factor, which accounted for Mie and Rayleigh 
scattering as well as gaseous absorption using 
the formulae of Lacis and Hansen [18] together 
with the RTM of Tanre [12], and planetary and 
terrestrial albedo determined from with the 
METEOSAT radiometer data Multiple reflections 
between the cloud base and the ground were 
assumed to behave isotropically It should be 
noted that as a consequence of uniformity of the 
aerosol content in both the clear sky and cloudy 
conditions the model treats an unusually strong 
concentration of aerosols as a cloud [7]

2.1.1.2	Statistical Satellite Models

These models are defined on the basis of the 
regression between the pyranometer based solar 
irradiance at ground level and simultaneous digital 
counts provided by satellite based instruments 
The various parameters in regression equations 
include solar zenith angle, cloud cover index, 
atmospheric transmissivity, along with current 
brightness, minimum brightness and maximum 
brightness of each pixel According to [7] the two 
main difficulties which arise when comparing 
satellite and ground data are errors associated 
with the localization of the ground based 
pyranometer sites on the satellite images and 
the fundamental difference in the measurement 
technique According to some authors [19, 20] 
these problems can be solved by incorporating 
more pixels in the definition of target areas by 
enhancing the satellite resolution.

A)	 Hay-Hanson model

One of the simplest statistical satellite models 
was developed by Hay and Hanson (HH) in 
1978 [21] The model was developed for the 
Global Atmospheric Research Program’s Atlantic 
Tropical Experiment to generate maps of the 
shortwave radiation (055 - 075 µm) reaching the 
surface of the ocean The HH model is based of a 
statistical linear regression of the clearness index 
and atmospheric absorptivity:

 	 ....(1)

Hay and Hanson [21] originally determined 
regression coefficients a and b as

These values were later re-evaluated by Raphael 
and Hay [3] to be

Which gives a better agreement with their dataset

It has been pointed out in [7] that this relationship 
fails under unusually high surface albedo which 
results from a snow- or ice-covered surface In 
addition, despite what has been mentioned about 
statistical methods, this approach requires the 
calibration of reported digital satellite counts i 
order to determine visible radiance.

B)	 Tarpley & Justus-Paris-Tarpley Models

Tarpley used a set of coincident satellite and 
ground pyranometer data sets taken by the 
National Environmental Satellite Data and 
Informations Services (NESDIS) and the Great 
Planes Agricultural Council over the central US in 
late 1970s [22] This study made use of statistical 
regressions against measurements from GOES 
VISSR Three separate cases were considered 
based on the value of the cloud index defined by 
Tarpley as,

	 ....(2)

where N is the total number of pixels included 
in the target area, and N2 and N3 are the number 
of pixels in partly cloudy and cloudy conditions 
respectively The Tarpley regression model was 
defined as,

   ....(3)
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where Bm is the mean target brightens, defined as 
the mean brightness of a 7 x 6 pixel array; Bcld 
is the mean cloud brightness, estimated through 
an average of the brightness values of all the 
pixels in the target area brighter than a specified 
threshold; and Bn = B0 (θz = 45◦, φs= 105◦) is the 
normalized clear brightness which is a special 
case of the clear brightness B0 which is obtained 
from the following regression, 

	 ....(4)

Raphael and Hay [23] also estimated their own 
regression coeffcients for this model which are 
different from Tarpley’s treatment

This model was later refined by Jutus, Paris and 
Tarpley (JPT) [24] for part of the Agriculture and 
Resources Inventory Surveys through Aerospace 
Remote Sensing (AgRISTARS) program This new 
model replaced the three equations of Tarpley’s 
model with the following single equation,

    ....(5)

where Bm is again the mean observed target 
brightness and B0 is defined by the following 
relationship,

....(6)

As before, the authors in [24] assumed that the 
brightness for clear sky conditions and the 
measured target mean brightness Bm were known 
The weights w1 and w2 are values between 0 and 
1 which were empirically determined Each of 
the cases above approximates various conditions 
of the atmosphere The first and fifth cases 
correspond to the likely presence of clouds and 
the insufficient scene illumination for radiation 
forecasts respectively; each of these cases 

leaves the clear brightness unaltered The second 
case allows for seasonal variation in the clear 
brightness due to snow- or ice-cover The third 
case is to account for clearer than normal days 
while the fourth case allows for the removal of 
erroneous effects from the satellite image on B0 
[7]

C)	 Cano-HELIOSAT Model

Cano developed a model for the French 
HELIOSAT project in 1982 which used 
visible band METEOSAT data [25] The Cano-
HELIOSAT model proposes a simple linear 
relationship between the clearness index Kt and 
the cloud index nt at the same point in time and 
space This is accomplished by considering local 
values of Kt and nt  at each pixel as,

	 ....(7)

where A and B are matrices of regression 
coefficients [26] The cloud cover index was 
defined as,

	 ....(8)

wheret  is the measured ground albedo, ρ0 is the 
reference ground albedo and ρc is the average 
albedo of the top of the clouds The reference 
ground albedo was calculated using Bourges 
model [27] and a recursive procedure which 
minimized the variance of the errors of the clear 
sky model

Refinements to the Cano-HELIOSAT model 
include use of the ESRA clear sky model to correct 
the estimation of the terrestrial and atmospheric 
albedos by Rigollier et al. [28] These corrections 
were subsequently used to derive the following 
relationship between the cloud index nt and a 
clear sky index kt,

 ....(9)
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More recent developments of the Cano-
HELIOSAT model include consideration of 
the three dimensional structure of cloud in the 
determination of the cloud index [29], modification 
of the previous kt-nt relationship to include 
moments of the cloud index distribution [30], 
corrections for non-Lambertian reflectivity and 
the back scattering of clouds [31] and integration 
of the SOLIS-RTM platform [32]

D)	 Perez Operational Model

One of the most widely used statistical satellite 
models is the operational model of Perez [33] 
The Perez model uses a modified version of 
Kasten’s clear sky model which defines a Link 
turbidity coefficient independent of airmass [34] 
The model also allows for the modification of 
the algorithm based on real time measurements 
of snow- or ice-cover as well as the correction of 
sun satellite angle effects for each pixel [35]

The model relates hourly global irradiance It and 
cloud index nt through a simple regression:

	 ....(10)

where is a fifth order polynomial of the 
cloud index given by,

  ....(11)

Values of the coeffcients as calculated by Perez 
in are given in [35] This model was also modified 
by Perez and Ineichen to forecast DNI from GHI 
forecasts provided by the operational model 
as well as corrections for locations presenting 
complex arid terrain [36]

2.1.1.3	Total Sky Imagers

The satellite and cloud imagery based model is a 
physical forecasting model that analyses clouds 
The satellite imagery deals with the cloudiness 
with high spatial resolution The high spatial 
resolution satellite has the potential to derive the 
required information on cloud motion The cloud 
motion helps in locating the position of cloud 

and hence solar irradiance can be forecasted The 
parameters which have the most influence on 
solar irradiance at the surface are cloud covers 
and cloud optical depth The processing of 
satellite and cloud imageries are done in order 
to characterize clouds and detect their variability 
and then forecast the GHI up to 6 hours ahead 
This model works by determining the cloud 
structures during earlier recorded time steps The 
structure of the clouds and their positions helps 
in predicting solar irradiance [2][37] Successfully 
used Total Sky Imager (TSI) in predicting very 
short and short-term forecasting

Both NWPs and satellite imaging techniques 
lack the spatial and temporal resolution to 
provide information regarding high frequency 
fluctuations of solar irradiance. An alternative 
is provided through ground based imaging of 
local meteorological conditions One instrument 
which has seen increased application lately is the 
Total Sky Imager (TSI) manufactured by Yankee 
Environmental Systems [38]

Typically the methodology for ground based 
images is similar to satellite based techniques 
Projections of observed solar radiation conditions 
based on immediate measured history while the 
position and impact of clouds is deduced from 
their motion In the case of TSIs the CCD image 
is digitally processed in order to detect locations 
of the sky covered by clouds The cloud image 
is then propagated forward in time resulting in a 
forecast TSI images are useful for prediction of 
GHI on time horizons up to 15 minutes

TSI can be used to forecast both the Direct 
Normal Irradiance (DNI) [39-41] and GHI [37] 
[42-43] In some researches researchers also use 
commercially available TSI such as TSI-800 
manufactured by Yankee Environmental Systems 
[44], while other researchers develop their own 
TSIs [45]

Sky images are taken sequentially in time; cloud 
information can be derived from the images 
through image processing Template matching 
algorithms [46-48] are used for computing the 
motion vectors describing the movement of 
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clouds based on consecutive images Forecast 
can thus be obtained through persisting the 
motion vectors or more sophistically, by solving 
the advection-diffusion equation [49] In recent 
reports it has been found that forecasting based 
on deterministic ray tracing method produces 
forecasts that are worse than persistence, at 5, 
10, 15 min forecast horizon [50] In terms of 
normalized Root Mean Square Error (nRMSE), 
forecast error using TSI varies from 18 to 24% 
for forecast horizons ranging from 30 s to 15 
min [45] Nevertheless, due to its physical–based 
nature and its potential, TSI–based methods are 
quickly adopted by many other groups in the past 
two years not only for irradiance forecasting [51] 
but also used for general atmospheric research 
[52]

For the purpose of determining and forecasting 
of local solar radiation conditions geostationary 
satellite images obtained from the METEOSAT 
satellite have been used The basis of this method 
relies upon the determination of the cloud structures 
during the previous recorded time steps For the 
forecast, cloud motion vector algorithms ([53]; 
[54]) can be used to obtain the cloud conditions 
at the next time step ([55], [56]), mapping is then 
performed on the forecast images to obtain the 
future irradiance Extrapolation of their motion 
leads to a forecast of cloud positions and, as a 
consequence, to the local radiation situation This 
method has the advantage of producing a spatial 
analysis of an area within certain resolution 
capabilities The improvement over the persistent 
method is small, according to the authors [54], 
[37] used satellite imagery and ground-based sky 
imager respectively for solar forecasting

It should be noted that while these TSI based 
provide local meteorological information enabling 
intra-hour forecasts, their time horizon is restricted 
to approximately 30 minutes do to their limited 
range of view One possible approach to extend 
the time horizon of ground based measurements 
is to distribute an array of imagers so that more 
information regarding local cloud fields is 
obtained However, the relative cost associated 
with the TSI ($2,000) and the dynamic nature of 
local cloud fields which may limit the correlation 

of successive images poses difficulties for current 
ground based imaging methodologies In addition 
to an upper bound on the time horizon of the TSI, 
a lower band is also imposed The lower bound is 
a result of circum-solar scattering of light as well 
as limitations introduced by the shadow-band 
which currently renders time horizons shorter 
than 2 minutes inaccessible [37, 57]

2.1.1.4	Wireless Sensor Network Systems

Satellite and NWP models typically possess 
time horizons on the order of 30 minutes while 
stochastic and AI methods have not been widely 
applied to time horizons less than 15 minutes 
TSIs are limited by the circum-solar scattering of 
light and the shadow-band to time horizons no 
longer than 3 minutes [37, 57] Semiconductor 
point sensors are capable of very high sampling 
frequencies but fail to correctly characterize the 
distributed nature of an operational scale PV 
plant [58] An alternative has been suggested 
by Coimbra and coworkers at the University of 
California, Merced [156] A 1MW PV array was 
outfitted with 40 Telos B nodes equipped with low 
cost solar irradiance sensors The authors in [59] 
proposed a forecasting algorithm which utilized 
multiple readings from the spatially distributed 
network of sensors to compute future values of the 
distributed power output The forecasting approach 
utilized spatial cross-correlations between sensor 
nodes which provided forecasts in the range of 
20-50 seconds Calculated velocities agreed with 
TSI calculated cloud velocity field over 70% 
of the time [59] This work demonstrates the 
potential of wireless sensor networks as low cost 
and highly accurate approaches for intra-minute 
solar forecasting

2.1.1.5	Numerical Weather Prediction Models

The numerical weather predictions purely rely 
upon the atmospheric physics It is the study of 
how current observations of the weather are used 
and then processed to predict the future states of 
the weather This is done with the help of super 
computers A process called assimilation is done 
so as to process the current weather states and 
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produce outputs of temperature, wind, irradiance 
and other hundreds of meteorological elements 
The NWP is good for one day to multi-days ahead 
horizons Thus, it is a useful tool for different 
variety of applications, such as the scheduling 
of solar power plants NWP is also helpful in 
predicting the transient variations in clouds, 
which are considered the major obstacles for solar 
irradiance at the ground After the assimilation 
of current observations, the NWP forecasts the 
future conditions and then the error is corrected 
based on the previous performance by a statistical 
post processing.

NWP processes as follows: In the first step the 
initial states of atmosphere are collected with 
the help of different sources such as satellites 
and ground observations The key source of the 
NWP error is “data-assimilation”, which is a 
complex process This occurs because sources 
measure different quantities of current states over 
different volumes of a space and that creates an 
error in the measurement In the second step, the 
main important equations of atmosphere, such 
as dynamics equations, Newton’s second law 
for fluids flow, thermodynamics equations, and 
radiative transfer equations are integrated and 
solved [60] In solar engineering, the physical 
laws of motion and thermodynamics are rarely 
scrutinized in detail As NWP models output 
hundreds of parameters in each run, irradiance 
is but one of them, researchers simply run NWP 
models [61-63] and study the outputs As most 
of the NWP models are not adapted specifically 
for irradiance forecasting purposes, biased 
forecasts commonly result Finally, the statistical 
post-processing step where the output of the 
NWP is manipulated using a trial and error after 
simulation, in order to compare the outputs with 
observations and find the statistical relation, and 
hence correct the error Statistical post–processing 
such as the application of model output statistics 
and Kalman filtering are thus used to obtain 
useful results [64-65]

There are two models in which NWP models can 
be classified: Global models and Regional models 
In global models, global or worldwide simulation 
of the behaviour of the atmosphere is carried out, 

where as in regional (mesoscale) models it is done 
on a continent or a country scale [66] Well known 
NWP models include Global Forecast System 
(GFS), North American Mesoscale (NAM) model 
and Weather Research and Forecasting (WRF) 
model The difference amongst the three occurs 
in terms of spatial resolution, input parameters 
and most importantly, the under lying physical 
models It is therefore important to choose the 
forecasting domain, improve data collection and 
select an NWP system that uses suitable physical 
models when one attempts to forecast irradiance

In their current development, NWPs does not 
predict the exact position and extent of cloud 
fields Their relatively coarse spatial resolution 
(typically on the order of 1 - 20km) renders 
NWP models unable to resolve the micro-scale 
physics that are associated with cloud formation 
Therefore, NWP based solar forecast shows 
cloud prediction in accuracy which is considered 
as one of the largest sources of errors in NWP 
The benefits given by NWP are, it works for long 
time horizons (15 to 240 hours) With the help 
of regional and global modelling of atmospheric 
physics it is possible to obtain information about 
the propagation of large scale weather patterns 
As compared to satellite based methods NWPs 
shows more accurate results of forecast for time 
horizons exceeding 4 hours [67-68] Accordingly, 
NWPs provide the most attractive option for 
medium to long term atmospheric forecasting

For time horizons exceeding 6 hours, up to 
several days ahead, it is advisable to use NWP 
for accurate results NWP models predict GHI 
using columnar (ID) radiative transfer models 
[69] Showed that the MM5 mesoscale model can 
predict GHI in clear skies without mean bias error 
(MBE) However, the bias was highly dependent 
on cloud conditions and becomes strong in 
overcast conditions

Many scientists [68], [70-72] evaluated different 
NWP based GHI forecast at different locations 
For all the locations various RMSE percentage 
are calculated NWP and satellite forecasts are 
inadequate for achieving high temporal and 
spatial resolution for intra hour forecasts This 
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gap can be filled by ground observation using a 
sky imager and delivers a sub-kilometre view of 
cloud shadows over a large scale PV power plant 
or an urban distribution feeder

Model Output Statistics (MOS) is a post-
processing technique which is used for interpreting 
numerical model output and producing site-
specific forecasts A statistical approach is used 
by MOS for relating observed weather elements 
with appropriate variables (predictors) These 
predictors can be NWP model forecast, prior 
observations, or geo-climatic data

Consistent error patterns allow for MOS to be used 
to produce a bias reduction function for future 
forecasts [73] Used MOS and calculated 245% 
RMSE for averaged daily forecasts. Similarly 
other authors [68], [65] used MOS correction 
function for eliminating bias and reduced RMSE.

2.1.2.1	Global Forecast System (GFS)

One of the most well-known global NWP models 
is the Global Forecast System (GFS) The GFS 
model is run by NOAA (National Oceanic and 
Atmospheric Administration) every six hours and 
produces forecasts up to 384 hours (16 days) in 
advance on a 28km x 28km grid for the global 
domain [74] The GFS loop time steps are 6 hours 
out to 180 hours (75 days), then change to 12-hour 
time steps out to 384 hours (16 days) In addition 
to the 28km x 28km horizontal discretization, the 
GFS models 64 vertical layers of the atmosphere 
The RTM of the GFS accepts as inputs: 
predicted values of a fully three dimensional 
aerosol concentration field, predicted values of 
a two dimensional (horizontal) H2O, O2 and O3 
concentration field as well as a constant two 
dimensional (horizontal) CO2 field The GFS model 
also calculates wavelength specific attenuation 
of both upwelling and downwelling diffuse 
irradiances through a sophisticated scattering/
absorbing scheme [75] It should be noted that 
the radiant flux attenuation is dependent on H2O 
phase, temperature and particle size which makes 
the GFS sensitive to temperature errors

A)	 The European Centre for Medium-
Range Weather Forecasts (ECMWF)

The ECMWF provides weather forecasts up to 
15 days ahead, including solar surface irradiance 
and different cloud parameters as model output 
ECMWF forecasts have shown their high quality 
as a basis for both wind and solar power forecasts 
These forecasts are described here as an example 
of global NWP model forecasts The evaluations 
of ECMWF-based irradiance in Lorenz et al. 
[61, 76, 77] are based on the T799 version with a 
spatial resolution of 25 km x 25 km The current 
version T1279 was implemented in January 2010 
and shows a horizontal resolution of 16 km x 
16 km Ninety-one hybrid vertical levels resolve 
the atmosphere up to 001 hPa corresponding to 
approximately 80 km The temporal resolution of 
the forecasts is 3 h for the first 3 forecast days 
that are most relevant for PV power prediction.
Temporally, ECMWF forecasts have a time-step 
size of 3 hr and are published twice daily up to 
10 days in advance

2.1.2.2	Regional NWP Model

Unlike global NWP models, regional NWP model 
only a sub-domain of the global space Regional 
models in the US include the Rapid Update Cycle 
(RUC), RAPid refresh (RAP), North American 
Mesoscale (NAM) model, High Resolution Rapid 
Refresh (HRRR) and the Weather Research and 
Forecasting (WRF) model [155]

A)	 Rapid Update Cycle (RUC)/ RAPid 
refresh (RAP) Models

The RUC was a NOAA/NCEP (National Centers 
for Environmental Prediction) operational NWP 
model until May, 2012 RUC produced hourly 
updated 13km x 13km horizontally resolved 
forecasts with 50 atmospheric layers out to a time 
horizon of 18 hours The RUC loop time steps 
are 1 hour from time of analysis out to 18 hours 
The RUC possessed a wavelength independent 
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model for the absorption/scattering of radiation 
by water vapour only Other atmospheric gasses 
and aerosols were neglected The RUC also 
assumed Rayleigh scattering which failed to 
capture the inversely proportional relationship 
between intensity of scattering and wavelength 
of radiation In addition, only down welling 
irradiances were attenuated which sometimes 
lead to the underestimation of di-use irradiance 
due to backscattering [78]

As of May 1, 2012 the RUC was replaced with 
the Rapid Refresh (RAP) model as the next-
generation version of the NCEP hourly cycle 
system The RAP model possess the same spatial 
and atmospheric resolution (12km x 12km, 
50 layers) but it based on a new rapid update 
configuration of the WRF model As a result, 
the RAP benefited from the ongoing community 
improvements to the WRF The domain of the 
RAP is also significantly larger than the previous 
RUC and was expanded from the Continental 
United States (CONUS) region to include Alaska 
as well

B)	 North American Mesoscaale (NAM) 
Model

The North American Mesoscale (NAM) model 
is the NCEP’s primary mesoscale environmental 
modelling tool NAM produces 12 km x  
12 km horizontally resolved forecasts with 60 
atmospheric layers out to a time horizon of 96 
hours over North America and is updated four 
times daily The NAM model loop time steps are 
6 hours from the time of analysis out to 84 hours 
(35 days) The NAM model used predicted water 
vapor concentrations, seasonally varying but 
zonally constant O3 concentrations and constant 
CO2 concentrations Aerosols are not explicitly 
considered except for a top of the atmoshpere 
adjustment, which is not particularly troublesome 
with the exception of regions with high levels of 
time varying aerosol concentrations Wavelength 
specific attenuation of both upwelling and 
downwelling fluxes is accounted for

C)	 High Resolution Rapid Refresh (HRRR) 
Model

The High Resolution Rapid Refresh (HRRR) 
model is an NOAA operated, experimental, hourly 
updated, 3 km x 3 km resolution atmospheric 
model The HRRR was previously only nested 
over the eastern 2/3 of the continental United 
States, however as of June 2009 coverage was 
expanded to the CONUS region similar to the 
former RUC The RHHH models uses the 13 km 
resolution RUC/RAP for its initial conditions and 
is updated hourly Benefits of the HRRR include 
the increased resolution and frequent updates 
which allow for shorter timescale predictions 
[155]

D)	 Weather Research and Forecasting 
(WRF) Model

Many of the NWPs discussed are based on a 
version of the WRF which was created thought 
a partnership between NOAA and the National 
Center for Atmospheric Research (NCAR) 
in 2004 The WRF has, since its introduction, 
seen increased applicability in both research 
and operational communities WRF software is 
supported ongoing eorts including workshops 
and on-line documentation One of the main 
goals of the WRF model is to advance mesoscale 
atmospheric prediction by promoting closer ties 
between research and operational forecasting 
communities The WRF is flexible by design 
and intended for a wide variety of forecasting 
applications with a priority on spatial resolutions 
ranging from 1 to 10 km [155]

2.2	 Statistical Methods

Forecasting methods based on historical data 
of solar irradiance are categorized into two 
categories: statistical and learning methods 
Seasonality analysis, Box–Jenkins or Auto 
Regressive Integrated Moving Average (ARIMA), 
Multiple Regressions and Exponential Smoothing 
are examples of statistical methods, whilst AI 
paradigms include fuzzy inference systems, 
genetic algorithm, neural networks, machine 
learning, etc
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TABLE 1
 COMPARISON OF VARIOUS NWP MODELS

Global 
Models

Model Resolution No of layers Time Horizon Time Step Agency

GFS 28 km 64 180 hr, 384 hr 6 hr, 12 hr NOAA

ECMWF 25 km 91 360 hr 3 hr -

Regional 
Models

RUC/RAP 13 km 50 18 hr 1 hr NOAA/NCEP

NAM 12 km 60 96 hr 6 hr NCEP
HRRR 3 km 50 15 hr 15 min NOAA
WRF 1 km As per the user As per the user As per the user NOAA/NCAR

2.2.1	Time Series Models

As said earlier time series models gives the result 
based on the historical data Time series can be 
defined as a sequence of observations measured 
over time, such as the hourly, daily or weekly 
Since the observation could be random it is 
also known as stochastic process A time series 
technique mainly focuses at the patterns of the 
data These patterns should be identifiable and 
predictable for the time-series based forecast

2.2.1.1	Linear Stationary Models

Observational series that describe a changing 
physical phenomenon with time can be classified 
into two main categories; stationary and non-
stationary If the sequence of weights in Equation 
(12)below is finite, or infinite and convergent, the 
linear filter is said to be stable and the process 
zt (stochastic process) to be stationary [155] 
Stationary time series are static with respect to 
their general shape The fluctuations may appear 
ordered or completely random, nonetheless the 
character of the series is, on the whole, the same 
in different segments In this case, the parameter 
µ may be interpreted as the average value about 
which the series fluctuates Stationary time series 
find applications in many areas of the physical 
sciences, for instance, observational time series 
and series involving deviations from a trend 
are often stationary [79] In fact, the stochastic 
portion a solar radiation data set is often framed 
as a stationary process [80]

	 ....(12)

Where q is the forward shift or advance operator 
and G(q) is the transfer function of the filter

A)	 Auto-Regressive (AR) Models

The so-called auto-regressive models get their 
name from the fact that the current value of 
the process can be expressed as a finite, linear 
combination of the previous values of the process 
and a single shock  Thus, the process is said 
to be regressed on the previous values If we 
define the stochastic portion of the time series 

 as deviations from the mean 
value µas

	 ....(13)

then the Auto-Regressive process of order m can 
be written as

	 ....(14)

We can simplify the previous expression by 
defining the Auto-Regressive operator of order 
m, AR(m), as

 	 ....(15)

then the AR(m) model may be written conveniently 
as

	 ....(16)

where it is clear that the process is regressed on 
the previous values of  In order to implement 
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this model one must determine the m+2 unknown 
parameters  .  It is illustrative 
to note that Equation (16) implies

	 ....(17)

Therefore, it is helpful to think of the AR(m) 
process as the output of a linear filter with transfer 
function  and white noise as the input

In order for the AR(m) process to be stationary 
a set of conditions must be satisfied In [81] the 
authors point out that the general AR(m) process 
has the inverse transfer function

	 ....(18)

Which allows expansion of the process in partial 
fractions,

	 ....(19)

where it is clear that if  is to be a 
convergent series for , then we must have 

, where k =1,2,3,…mThis is equivalent to 
saying that the roots of the equation  
must lie outside the unit circle For a discussion 
of stationary conditions of AR(m) processes see 
[79, 81, 82]

B)	 Moving Average (MA) Models

While the AR techniques model the stochastic 
portion of the time series  as a weighted sum 
of previous values , Moving 
Average (MA) methods model  as a finite sum 
of n previous shocks . The 
Moving Average process of order n, MA(n), is 
defined as

	 ....(20)

Let us pause here and note that the terminology 
moving average can be a bit mis-leading due to 
the fact that the weights in Equation (20) do not, 

in general, need to be positive nor does their sum 
necessarily equal unity [81] Nonetheless, the 
name is used for historic convention The MA(n) 
operator is defined

	 ....(21)

and as a result we can write the MA model in an 
economic fashion

	 ....(22)

Hence, the MA process can be thought of as the 
output  of a linear filter whose transfer function 
is  with white noise  as the input

Like its counterpart, the MA model contains 
n + 2 undetermined parameters 
which must be determined from the data using 
the techniques described in the next section 
Unlike AR(m) processes, MA(n) processes do 
not have a stability condition and, as a result, are 
unconditionally stable [79]

C)	 Mixed Auto-Regressive Moving Average 
(ARMA) Models

Linear processes represented by an infinite or 
an extraneous number of parameters are clearly 
not practical However, it is possible to introduce 
parsimony and still obtain useful models A 
well-known result in time series analysis is the 
relationship between the Θ weights and Φ weights 
[81] Operating on both sides of Equation (16) by 
Θ(q) and making use of Equation (22), yields

	 ....(23)

Which implies  	 ....(24)

That  is  	 ....(25)

Equation (25) indicates that the Φ weights may 
be arrived at from knowledge of the Θ weights, 
and vice-versa Thus the finite MA process 

 can be written as an infinite AR 
process
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	 ....(26)

However, if the process were really MA(n), 
we would arrive at a non-parsimonious 
representation in terms of an AR(m) method By 
the same reasoning, an AR(m) method could not 
be parsimoniously represented using a MA(n) 
process Therefore, in practice, in order to realize 
a parameterization which is parsimonious, both 
AR and MA terms are often used in the model 
development Hence,

	 ....(27)

or

 	 ....(28)

Equation (28) is referred to as the mixed Auto-
Regressive Moving Average (ARMA) process 
of order (m, n) It is illustrative to note that the 
ARMA(m, n) process can be written

	 ....(29)

and as a result can be thought of as the output 
from a linear filter, whose transfer function is the 
ratio of two polynomials Θn(q) and Φm(B), with 
white noise as the input

In practice, it is frequently true that adequate 
representation of actually occurring stationary 
time series can be obtained from models in which 
n and m are not greater than two and often less 
than two [81, 80] The order of the model, that 
is the values of m and n, is determined using 
the sample auto-correlation function and partial 
auto-correlation function of the time series [83] 
The model parameters are estimated by least 
squares methods and the resulting model is 
said to adequately contained in the series in a 
parsimonious manner

D)	 Mixed Auto-Regressive Moving Average 
Models with Exogenous Variables 
(ARMAX)

All of the linear stationary stochastic techniques 
discusses so far have been univariate; meaning 
the technique uses previous values of only the 
time series it is attempting to model However, 
the accuracy of ARMA (m, n) models may be 
improved by including information external to 
the time series under analysis For example, in the 
case of solar forecasting, the error of a forecasting 
model may be reduced by including information 
about the evolution of the local temperature, 
relative humidity, cloud cover, wind speed, wind 
direction, etc Variables such as these, which are 
independent of the models but affect its value, are 
referred to as exogenous variables We can include 
into the ARMA (m, n) models p exogenous input 
terms which allows us to write the ARMAX  
(m, n, p) process as

    
....(30)

The above model contains AR (m) and MA 
(n) models as well as the last p values of an 
exogenous time series et Defining the exogenous 
input operator of order p as

....(31)

The ARMAX (m, n, p) model conveniently be 
written as

	 ....(32)

The careful reader might already be aware of 
the fact that all of the linear stationary models 
discussed so far have a similar structure In fact, 
many models in linear system analysis can be 
considered a special case of the general discrete 
time model structure

	 ....(33)
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where  are 
polynomials of the shift operator q [82, 84]

2.2.1.2	Non-Linear Stationary Models

So far we have only considered general classes 
of linear stationary models However, non-linear 
methods would enable powerful structures 
with the ability to accurately describe complex 
nonlinear behaviour such as: chaos, hysteresis 
and saturation effects or a combination of several 
non-linear problems [84] A step towards nonlinear 
modelling is made by introducing the Non-linear 
AR-exogenous (NARX) model as

	
....(34)

In much the same way one can also convert 
the ARMAX model into a Non-linear ARMAX 
model (NARMAX) as follows

	 ....(35)

These non-linear input-output models find many 
applications in the field of engineering, especially 
in the parameterization of Artificial Networks

2.2.1.3	Linear Non-Stationary Models

If the sequence of weights in Equation (12) is 
infinite but not convergent, the linear filter’s 
transfer function G(q) is said to be unstable and the 
process zt to be non-stationary In this case, µ has 
no physical meaning except as a reference to the 
level of the process Non-stationary processes are 
different in one or more respects throughout the 
time series due to the time dependent nature of the 
level As a result, in the analysis of non-stationary 
time series, time must play a fundamental role, 
for example, as the independent variable in a 
progression function, or as a normalization factor 
in the analysis of the evolution of a phenomenon 
from an initial state [79] Several observed time 
series behave as if they has no specified mean 
about which they fluctuate, for example, daily 

stock prices or hourly readings from a chemical 
process [81]

A)	 Auto-Regressive Integrated Moving 
Average Models (ARIMA)

While non-stationary processes do not fluctuate 
about a static mean, they still display some level 
of homogeneity to the extent that, besides a 
difference in local level or trend, different sections 
of the time series behave in a quite similar way 
These non-stationary processes may be modelled 
by particularizing an appropriate difference, 
for example, the value of the level or slope, as 
stationary What follows is a description of an 
important class of models for which it is assumed 
that the dth differene is a stationary ARMA(m, n) 
process

We have seen that the stationary condition of 
an ARMA(m, n) process is that all roots of Φm 

(q) = 0 lie outside the unit circle, and when the 
roots lie inside the unit circle, the model exhibits 
non-stationary behaviour However, we have not 
discussed the situation for which the roots of 
Φm(q) = 0 lie on the unit circle Let us examine 
the following ARMA(m, n) model

	 ....(36)

and specify that d of the roots of  lie 
on the unit circle and the residuum lie outside We 
can then express the model as

	 ....(37)

where   is a stationary and invertible AR(m) 
operator Seeing that  when d ≥ 1, we 
can write

	 ....(38)

Defining =  allows one to express the model 
in a more illustrative way

	 ....(39)
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Where it is clear that the model is in agreement 
with the assumption that the dth difference of 
the time series can be regarded as a stationary 
ARMA(p, q) process If we not invert Equation 
(39) we see that

	 ....(40)

Which implies that the process can be arrived 
at by summing, or integrating, the stationary 
process d times Thus, we refer to (38) as the Auto-
Regressive Integrated Moving Average (ARIMA) 
process Because the AR operator  is of 
order m, the dth difference is taken and the MA 
operator  is of order n in (38) we refer to 
the process as ARIMA (m, d, n) In practice, d 
is typically 0, 1 or at most 2 [81] As mentioned 
above, the ARIMA (m, d, n) model is equivalent 
to representing the process  as the output of a 
linear filter with transfer function    
and takes white noise as an input

Auto-Regressive Integrated Moving Average 
Models with Exogenous Variables (ARIMAX)

In a similar way to the ARMAX (m, d, n) model, 
the previous p values of an exogenous time series 
et may also be included into the ARIMA (m, d, 
n) model to yield the ARIMAX process of order 
(m, d, n, p)

....(41)

As we did before, defining  in terms of 
the backwards shift operator allows us to express 
the model in a more compact form

	 ....(42)

Which again looks very similar to Equation (33)

2.2.2	Persistence Model

The persistence model is considered as one of 
the simplest way for forecasting It basically 
predicts the future value, assuming it is same as 
the previous value

	 ....(43)

It is also known as the naive predictor It can be 
used to give a clue to compare with other methods 
The persistence model gives good results when 
the changes in the weather patterns are very 
little These models give high error results for 
forecasting more than one hour

2.2.3	Artificial Neural Networks

The artificial neural network (ANN) is a sub–
domain of artificial intelligence (AI)There are 
many architectures in ANN including multilayer 
perceptron (MLP), radial basis network, self–
organized map, support vector machine and 
Hopfield networks, and others [149] These 
architectures differ from one another greatly ANNs 
are however used to perform two types of tasks, 
which are, regression and pattern recognition Both 
these are applied in solar irradiance forecasting

To define the regression applications, in this inputs 
are mapped to outputs in a non-linear manner In 
this the historical data are used as ANN inputs and 
irradiance of the immediate time steps is outputs 
Therefore, ANN takes two steps, the training and 
the forecast In the training phase the weights of the 
artificial neurons are determined and the forecasts 
are computed based on the trained weights Same 
as regression applications, pattern recognition 
applications involve training and testing In this 
instead of outputting the forecast irradiance, the 
ANN gives a natural number as output which 
represents the object classification

The irradiance forecasting accuracy is improved 
by meteorological and climatological inputs 
such as temperature and humidity [85] used 
climatological variables as inputs to an ANN 
to predict monthly values of global horizontal 
irradiance (GHI) over a year Other examples 
include [86, 87, 88]
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FIG. 2	 CLASSIFICATION OF DIFFERENT MODELS

ANN also showed some developments in its fields 
so as to predict solar irradiance forecasting Some 
examples are [89] applied time delayed neural 
network; [90] applied wavelet neural network 
Other similar work includes [69][91-96]

Many researchers publish forecasting results with 
new data from various regions in the world for 
archive purpose [97] used MLPs for forecasts for 
six cities in Iran [98]Forecast solar irradiance of 
a grid connected PV plants in Italy [99] Forecast 
global radiation in Australia and compared to a 
few other techniques

Some work by [100-103] and [98] developed 
ANN using training data to reduce relative RMSE 
(rRMSE) of daily average GHI

2.3	 Hybrid Methods

Hybrid models are the combination of two or 
more forecasting techniques so as to improve 

the accuracy of the forecast Therefore, they 
are also known as combined models The idea 
behind using the hybrid models is to overcome 
the deficiencies of the individual models and 
to utilize the advantages of individual models, 
merge them together and provide a new hybrid 
model to reduce forecast errors For instance, the 
NWP model can be combined with the ANN 
by feeding the outputs from the NWP as input 
to the ANN modelsHybrid models can combine 
linear models, nonlinear models, or both linear 
and nonlinear models Many studies have showed 
that integrated forecast methods outperform 
individual forecast [2]

In some studies it is founded that ANN is combined 
with wavelet to develop a new forecasting method 
Cao and Cao [104-108] they all combined wavelet 
with ANN Other authors like [109-123] used 
other soft computing techniques like GA, fuzzy 
logic, Quantum based GA, adaptive neuro-fuzzy, 
etc to develop hybrid models In all these models 
combinations like (fuzzy + ANN), (adaptive 
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neuro fuzzy + ANN), (fuzzy + adaptive neuro-
fuzzy + ANN + GNN), (wavelet + fuzzy), etc are 
developed Time series methods are also combined 
with ANN like in [89] [124-129] Some other 
hybrid models include [130] which combined self 
organized map with exponential smoothing [131] 
combined MLP with model output statistics for 
improving NWP model

3.0	 SOLAR FORECASTING 
EVALUATION METRICS

For evaluating the performance of a forecast model, 
the error needs to be calculated Understanding 
the forecast error tells us how much to trust the 
forecast, and re-evaluate the forecasting methods 
in case of a high error forecast Solar power metrics 
can be broadly classified into four categories: 
[132]

3.1	 Statistical Metrics

Statistical error measurement differs on the fact 
whether solar irradiance or solar power forecast 
is done on daylight hours or on all hours of a day

3.1.1	Pearson’s correlation coefficient

Pearson’s correlation coefficient is a measure of 
the correlation between two variables (or sets of 
data) The Pearson’s correlation coefficient, ρ, is 
defined as the covariance of actual and forecast 
solar power variables divided by the product of 
their standard deviations, which is mathematically 
expressed as:

	 ....(44)

where p and  represents the actual and forecast 
solar power output, respectively A larger value 
of Pearson’s correlation coefficient indicates an 
improved solar forecasting skill

3.1.2	Root mean squared error (RMSE) and 
normalized root mean squared error 
(nRMSE)

The RMSE also provides a global error measure 
during the entire forecasting period, which is 
given by:

	 ....(45)

where  pi  represents the actual solar power 
generation at the ith  time step,  is the  
corresponding solar power generation estimated 
by a forecasting model, and N is the number 
of points estimated in the forecasting period To 
compare the results from different spatial and 
temporal scales of forecast errors, we normalized 
the RMSE using the capacity value of the analyzed 
solar plants

3.1.3	Maximum absolute error (MaxAE), 
Mean absolute error (MAE), mean 
absolute percentage error (MAPE), and 
mean bias error (MBE)

The MaxAE is an indicative of local deviations of 
forecast errors, which is given by:

	 ....(46)

The MaxAE metric is useful to evaluate the 
forecasting of short-term extreme events in the 
power system

The MAE has been widely used in regression 
problems and by the renewable energy industry to 
evaluate forecast performance, which is given by:

	 ....(47)

The MAE metric is also a global error measure 
metric, which, unlike the RMSE metric, does not 
excessively account for extreme forecast events

The MAPE and MBE are expressed as:
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 	 ....(48)

 	 ....(49)

The MBE metric intends to indicate average 
forecast bias Understanding the overall forecast 
bias (over- or under- forecasting) would allow 
power system operators to better allocate 
resources for compensating forecast errors in the 
dispatch process

3.1.4	Kolmogorov–Smirnov test integral 
(KSI) and OVER metrics

The KSI and OVER metrics were proposed by 
[133] The Kolmogorov–Smirnov (KS) test is a 
nonparametric test to determine if two data sets 
are significantly different The KS statistic D is 
defined as the maximum value of the absolute 
difference between two cumulative distribution 
functions (CDFs), expressed as

	 ....(50)

Where F and represents the CDFs of actual 
and forecast solar power generation data sets, 
respectively The associated null hypothesis 
is elaborated as follows: if the D statistic 
characterizing the difference between one 
distribution and the reference distribution is 
lower than the threshold value Vc , the two data 
sets have a very similar distribution and could 
statistically be the same The critical value Vc 
depends on the number of points in the forecast 
time series, which is calculated for a 99% level 
of confidence [133]

	 ....(51)

The difference between the CDFs of actual and 
forecast power is defined for each interval as 

 ....(52)

Here the value of m is chosen as 100, and the 
interval distance d is defined as 

	 ....(53)

Where   and  are the maximum and 
minimum values of the solar power generation, 
respectively The KSI parameter is defined as 
the integrated difference between the two CDFs, 
expressed as 

	 ....(54)

A smaller value of KSI indicates a better 
performance of solar power forecasting A zero 
KSI index means that the CDFs of two sets are 
equal A relative value of KSI is calculated by 
normalizing the KSI value by 

	 ....(55)

	 ....(56)

The OVER metric also characterizes the integrated 
difference between the CDFs of actual and 
forecast solar power The OVER metric considers 
only the points at which the critical value Vc is 
exceeded The OVER metric and its relative value 
are given by

	 ....(57)

The parameter t is defined by 

	 ....(58)
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As with the KSIPer metric, a smaller value of 
OVERPer indicates a better performance of the 
solar power forecasting

Skewness and kurtosis

Skewness is a measure of the asymmetry of 
the probability distribution, and is the third 
standardized moment, given by:

	 ....(59)

Where γ is the skewness; e is the solar power 
forecast error, which is equal to the forecast 
minus the actual solar power value; and  and  
are the mean and standard deviation of forecast 
errors, respectively Assuming that forecast errors 
are equal to forecast power minus actual power, 
a positive skewness of the forecast errors leads to 
an over-forecasting tail, and a negative skewness 
leads to an under-forecasting tail

Kurtosis is a measure of the magnitude of the peak 
of the distribution, or, conversely, how fat-tailed 
the distribution is, and is the fourth standardized 
moment, expressed as:

 	 ....(60)

Where K is the kurtosis,  is the fourth moment 
about the mean, and σ is the standard deviation of 
forecast errors The difference between the kurtosis 
of a sample distribution and that of the normal 
distribution is known as the excess kurtosis

3.2	 Metrics for Uncertainty Quantification 
and Propagation

Two metrics are proposed to quantify the 
uncertainty in solar forecasting, which are: (i) 
standard deviation of solar power forecast errors; 
and (ii) Rényi entropy of solar power forecast 
errors

-	 Information entropy of forecast errors

An information entropy approach was proposed 
in the literature [134-135] for assessing wind 
forecasting methods This information entropy 
approach based on Rényi entropy is adopted here 
to quantify the uncertainty in solar forecasting 
The Rényi entropy is defined as:

	 ....(61)

where α is a parameter that allows the creation 
of a spectrum of Rényi entropies, and pi is the 
probability density of the ith discrete section of 
the distribution Large values of α favor higher 
probability events; whereas smaller values of α 
weight all of the instances more evenly A larger 
value of Rényi entropy indicates a high uncertainty 
in the forecasting

3.3	 Metrics for Ramps Characterization

One of the biggest concerns associated with 
integrating a large amount of solar power into 
the grid is the ability to handle large ramps in 
solar power output, often caused by cloud events 
and extreme weather events [136] Different time 
and geographic scales influence solar ramps, and 
they can be either up-ramps or down-ramps, with 
varying levels of severity The forecasting of solar 
power can help reduce the uncertainty involved 
with the power supply

3.3.1	Swinging door algorithm signal 
compression

The swinging door algorithm extracts ramp periods 
in a series of power signals, by identifying the 
start and end points of each ramp The algorithm 
allows for consideration of a threshold parameter 
influencing its sensitivity to ramp variations

3.3.2	Heat Maps

In addition to the ramp periods identified by the 
swinging door algorithm, heat maps are adopted to 



The Journal of CPRI,  Vol. 12,  No. 2,  June 2016	 281

illustrate variations of solar power forecast errors 
Heat maps allow for power system operators to 
observe the timing, duration, and magnitude of 
ramps together

3.4	 Economic and Reliability Metrics

Flexibility reserves have been proposed as a way 
to compensate for the variability and short-term 

uncertainty of solar output Flexibility reserves 
are the amount of power (in MW) needed to 
compensate for most hourly or intra-hourly 
deviations between solar forecasts and actual solar 
generation values Improving solar forecasting 
accuracy is expected to decrease the amount of 
flexibility reserves that need to be procured with 
a high penetration of solar power in the system 
Flexibility reserves are primarily determined by 
net load forecast error characteristics [137]

TABLE 2

 SUMMARY OF 10 YEARS PUBLICATIONS IN SOLAR FORECASTING

Author Method Horizon Performance 
Metric

Location Variables Data Center

Perez et al. 
(2007)
[70]

Physical
(Satellite 
Based 
Model)

Less 
than 4 
hr, 4-8 
hr, 8-26 
hr, 26-76 
hr

Relative Mean 
Bias Error, 
Relative Mean 
Square Error  

Albany, 
New York

Ambient 
Temp, dew 
point temp, 
precipitation, 
weather type, 
sky cover, 
wind speed 
and direction, 
wave height, 
snow amount

National Digital 
Forecast Database

Lorenz et al. 
(2007)
[67]

Physical 3 days 
ahead

Root Mean 
Square Error, 
BIAS

Germany − ECMWF

Cao and Lin 
(2008)

[90]

Statistical 
(ANN)

Hourly 
and 
daily

Root Mean 
Square Error, 
Mean relative 
error

Shanghai 
and Macau

Cloud cover Data from 
Baoshan 
Meteorological 
Observatory, 
Shanghai 

Hacaoglu  
et al. (2008)
[138]

Statistical 
(ANN)

Hourly Root Mean 
Square Error

Eylul, 
Turkey

− 1 yr data from Iki 
Eylul, Turkey

Remund  
et al. (2008)
[71]

Physical 3 hours Mean Bias 
Error and Root 
Mean Square 
Error

USA, 
Germany, 
Switzerland

− National Digital 
Forecast Database

Bacher et al. 
(2009)
[139]

Statistical 
(Time 
Series 
Model)

Hourly Root Mean 
Square Error

Denmark − Danish 
Meteorological 
Institute

Lorenz et al. 
(2009)
[61]

Physical 1 hr to 
3days

Relative Root 
Mean Square 
Error

Germany − ECMWF
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Reikard 
(2009)
[125]

Hybrid 
(Time 
Series + 
ANN)

5, 15, 30 
min and 
1-4 hr

USA Humidity, 
cloud cover, 
atmospheric 
turbulence

National Solar 
Radiation 
Database , 
Solar Radiation 
Research 
Laboratory, 
National Wind 
Technology 
Laboratory

Azadeh et al. 
(2009)
[97]

Statistical 
(ANN)

− Mean Absolute 
Percentage 
Error

Iran Wind speed, 
vapour 
pressure, 
humidity, 
temp, location, 
month

Data from six 
cities in Iran

Mellit and 
Pavan (2010)
[98]

Statistical 
(ANN)

24 hr Mean Bias 
Error, Root 
Mean Square 
Error

Trieste, 
Italy

− Data from 
municipality of 
Trieste

Perez et al. 
(2010)
[72]

Physical 1-6 hr 
and 1-7 
-days 

KSI, OVER, 
Mean Bias 
Error, Root 
Mean Square 
Error

USA Cloud cover 1 yr of hourly 
data from the 
SURFRAD 
network

Martin et al. 
(2010)
[140]

Statistical 
(AR, 
ANN, 
Fuzzy)

Out to 3 
days

Relative Root 
Mean Square 
Deviation

Spain − Spanish National 
Weather Service, 
Spain

Mellit et al. 
(2010)
[141]

Statistical 
(AR and 
ANN)

Hourly Correlation 
coefficient, 
Mean Bias 
Error

Saudi 
Arabia

Sunshine 
duration, 
air temp, 
humidity

5yr data from 
Jeddah site, Saudi 
Arabia

Paoli et al. 
(2010)
[142]

Hybrid 
(kNN, 
ANN, AR, 
Markov 
Chain, 
Bayesian 
Inference)

1 day Root Mean 
Square Error, 
normalized 
Root Mean 
Square Error

France − 19 yrs of 
data from 
meteorological 
station of Ajaccio, 
France

Marquez 
and Coimbra 
(2011)
[143]

Statistical 
(ANN)

1 hr Mean Bias 
Error, Root 
Mean Square 
Error

US Sky cover, 
precipitation, 
temperatures

Data from US 
National Weather 
Service

Chen et al. 
(2011)
[127]

Hybrid 
(NWP+ 
ANN)

24 hr Mean Absolute 
Percentage 
Error, 

China Relative 
humidity, 
temperature, 
wind speed, 
wind direction, 
cloud, 
sunshine 
duration, air 
pressure

Data from 
Renewable 
Energy Research 
Center of 
Huazhong 
University of 
Science and 
Technology
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Chow et al 
(2011)
[37]

Physical 30 sec to 
5 min

Mean, Standard 
Deviation

San Diego − University of 
California, San 
Diego

Mathiesen 
and Kleissl 
(2011)
[65]

Physical 1 hr to 1 
day

Mean Bias 
Error, Root 
Mean Square 
Error

USA − Hourly data 
from SURFRAD 
network, USA

Voyant et al. 
(2011)
[126]

Hybrid 
(Time 
Series + 
ANN)

1 day Normalized 
Root Mean 
Square Error

France Pressure, 
nebulosity, 
humidity, wind 
speed

9 yrs data from 
the French 
Meteorological 
Organization 
Corsica, France

Wu and Chee 
(2011)
[89]

Hybrid 
(ARMA 
+ANN)

1 hour Normalized 
Root Mean 
Square Error, 
Root Mean 
Square Error 

Singapore − 1 yr data from 
Nanyang 
Technological 
University, 
Singapore

Capizzi et al. 
(2012)
[86]

Statistical 
(ANN)

1 day Mean Square 
Error, Root 
Mean Square 
Error

Italy Wind speed, 
humidity and 
temp

1 yr data from 
Catania, Italy

Boata and 
Gravila 
(2012)

Statistical 
(Fuzzy)

Daily Mean Absolute 
Error, Root 
Mean Square 
Error, Mean 
Bias Error

Europe − World Radiation 
Data Center, 
Russia

Mandal et al. 
(2012)
[106]

Hybrid 
(Wavelet+
ANN)

1 hour Mean Absolute 
Percentage 
Error, Mean 
Absolute Error, 
Root Mean 
Square Error 

USA Temperature 1 yr data from 
Oregon, USA

Yap and Karri 
(2012)
[99]

Statistical 1 month Root Mean 
Square Error

Australia Temperature, 
Rainfall, 
evaporation, 
sunshine hours

12 yrs 
meteorological 
data for Darwin, 
Australia

Pedro and 
Coimbra 
(2012)
[128]

Hybrid 1 and 2 
hr

Mean Absolute 
Error, Mean 
Bias Error, 
Coefficient of 
correlation

USA − 1 yr data from 
farm in Merced, 
USA

Voyant et al. 
(2012)
[144]

Hybrid 
(ARMA
+ANN)

1 hr Normalized 
Root Mean 
Square Error

France − 6 yrs data from 
Mediterranean, 
France

Marquez  
et al. (2013)
[40]

Hybrid 
(Satellite
+ANN)

30, 60, 
90, 120 
min

Root Mean 
Square Error, 
Mean Bias 
Error

USA − 1 yr data for 
Davis and Merced 
and hourly 
NOAA’s GOES 
West satellite 
images, USA
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Marquez  
et al. (2013)
[145]

Hybrid 
(ANN +
Sky 
images)

1 hr Mean Bias 
Error, Root 
Mean Square 
Error, 

USA Cloud cover, 
infrared 
radiation, sky-
images

2 months infrared 
radiation and sky-
images data for 
Merced, USA

Marquez 
and Coimbra 
(2013)
[146]

Physical 3-15 min Root Mean 
Square Error

USA Cloud cover Several days sky-
images data for 
Merced, USA

Bosch et al. 
(2013)
[147]

Statistical 
(Sensor 
Network)

− − USA − Several days data 
for San Diego, 
USA

Voyant et al. 
(2013)
[148]

Hybrid 
(ANN+ 
ARMA)

1 hr Normalized 
Root Mean 
Square Error

France Nebulosity, 
pressure, 
precipitation

10 yrs data from 
Mediterranean, 
France

Mathiesen  
et al. (2013)
[62]

Physical Hourly Relative Mean 
Bias Error, 
Relative Mean 
Absolute Error, 
Relative Root 
Mean Square 
Error, Relative 
Standard Error

San Diego Wind speed, 
wind direction, 
temperature, 
precipitation

Data from 
University of 
California, San 
Diego

Bernecker 
et al. (2014)
[42]

Physical 10 min Root Mean 
Square Error

Germany Cloud speed 15 days data 
collected in 
Kitzingen, 
Bavaria, Germany

Chu et al 
(2014)
[39]

Hybrid 
(Sky 
Imagery+ 
ANN)

5, 10, 15 
min

Mean Bias 
Error, Root 
Mean Square 
Error

US Cloud cover Satellite images 
from National 
Oceanic and 
Atmospheric 
Administration

Cros et al. 
(2014)
[53]

Physical 4 hr Relative Root 
Mean Square 
Error

France, 
Spain

Cloudiness Satellite images 
from European 
Organisation for 
the Exploitation 
of Meteorological 
Satellites

Amrouche 
and Pivert 
(2014)
[150]

Statistical 
(ANN)

1 day Mean Square 
Error, Root 
Mean Square 
Error

France Temperature US National 
Oceanic and 
Atmospheric 
Administration

Chaturvedi 
(2015)
[109]

Hybrid 
(Quantum
+ GA)

1 min Root Mean 
Square Error

India − Data from Faculty 
of Engineering, 
Dayal Bagh 
Educational 
Institute, Agra, 
India 
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Chu et al. 
(2015)
[50]

Statistical 
(ANN)

5, 10, 15 
min

Mean Bias 
Error, Mean 
Absolute 
Error, Root 
Mean Square 
Error, Standard 
Deviation, 
Skewness, 
Kurtosis

Nevada − Data from 
the Sempra 
Generation 
Copper Mountain 
Solar Power Plant 

Ghayekhloo 
et al. (2015)
[151]

Hybrid 1 hr Mean Absolute 
error, relative 
Mean Absolute 
Error, Root 
Mean Square 
Error, relative 
Mean Absolute 
Error

United 
States

Temperature, 
wind speed, 
wind direction

Hourly data of 
Ames Station, 
United States

Akarslan and 
Hocaoghu 
(2016)
[152]

Hybrid 1 hr Root Mean 
Square Error, 
Mean Bias 
Error

Turkey − Data from 
Turkish State 
Meteorological 
Service

Sharma et al. 
(2016)
[154]

Hybrid 
(sensor+ 
wavelet+ 
ANN)

1 hr, 15 
min

Mean Bias 
Error, 
Normalized 
Root Mean 
Square Error

Singapore − 1 hr data 
from National 
University of 
Singapore

Gala et al. 
(2016)
[153]

Hybrid 
(NWP+ 
Machine 
Learning)

3 hr Mean Absolute 
Error

Spain − Data from 
Departamento de 
Aplicaciones para 
la Operacion of 
Red Electrica de 
Espana

4.0	 CONCLUSION

Various solar forecasting methods and evaluation 
metrics are discussed in this work From the 
study it is found that a variety of work has been 
performed by various authors for a number of 
different spatial and temporal resolutions

The study here is done according to various 
forecasting methods In case of physical methods 
different cloud imagery and satellite based 
models are studied Apart from these two total 
sky imagers and NWP models are also the part of 
physical methods Satellite imaging based methods 
is used as alternatives to expensive ground 

based pyrometer networks These are best for 
forecasting of irradiance in environments where 
no other data is available The only disadvantage 
of these methods is that they suffer from temporal 
and spatial limitations due to satellite sampling 
frequency and limits on spatial resolution of the 
satellite images NWP is also used for locations 
without extensive ground networks These are 
best option for long term forecasting with horizon 
from few hours to couple of days or more

In case of statistical methods different time 
series and learning methods are studied In 
time series methods sequence of observations 
are measured over time These methods have 
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models like AR, MA, ARMA, ARMAX, ARIMA 
etc And in learning methods various artificial 
techniques are considered like neural networks, 
genetic algorithm etc Artificial Neural Network 
is discussed which provides good performance 
for irradiance data when enough historical data 
is available These are used for forecasting intra-
hour to yearly time horizons ANNs are generic 
non-linear approximators that deliver compact 
solutions for several non-linear, stochastic and 
multivariate problems

Nowadays, the most used method is the hybrid 
method which incorporates two or more 
techniques and produces a new forecasting 
method with improved accuracy In this method the 
deficiencies of the individual model are overcome 
and advantages of individual models are utilized 
These methods also reduce the forecast errors For 
evaluating the forecast errors solar forecasting 
evaluation metrics are also studied Forecasting 
evaluation metrics allow to understand how much 
to trust the forecast and re-evaluate it in case of 
high errors
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