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1.0	 INTRODUCTION

About 15 percent  of  the man-made  C O2   in  the 
entire world comes  from cars, airplanes,  trucks, 
ships and other internal combustion  engine (ICE) 
vehicles. In the U.S., the transportation  sector is 
responsible  for almost one third of their climate-
changing  emissions,  owing to their near-total 
dependence on petroleum fuels [1]. In order to 
combat global warming and climate change,  
reducing emissions  coming from transportation  
sector is quintessential. In the wake  of realizing 
this, transportation  electrification  seems a 
potential solution owing to much lower carbon  
and nitrogen oxides emissions   as opposed  to 
their Internal Combustion  Engine (ICE) vehicles 
counterparts. But to realize this customers need 
to be motivated to adopt this new technology. 
They should be availed  electricity for Electric 

Vehicles (EVs) charging at cheaper  prices. This 
calls in for a  need  to increase  the involvement 
of EV users in the electricity market. But  in  
spite of  having several  advantages,  due to  the 
lack of coordination in the charging of EVs this 
large scale deployment of EVs will certainly  
pose a threat to the normal operations of power 
system. The negative impacts these newly added 
EVs will  have on the power system are visible 
from the demonstrations  of several  studies  [2]. 
Demand  patterns that require line flows to exceed 
specified limits lead to grid congestion. To allow 
increased penetration of EVs without vio- lation 
of specified limits and constraints, coordinated 
charging of EVs is an effective solution. The 
proposed objectives  for charging coordination  
include EV penetration maximization [3], and 
minimization  of customer charging costs [4], 
[5] and EV charging co-ordination is possible in 
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multiple ways if the power grid has provisions  
for it.

Transition of the existing power grid to smart grid 
(SG) will enable the demand seeking entity to play 
a significant   role. There are several challenges like 
price volatility, congestion, capacity shortages, 
energy and fuel efficiencies  and greenhouse gas 
emissions,  faced  by the existing grid which need 
to be addressed.  Hence the need for a  reliable, 
environmentally friendly,  affordable, and 
consumer interactive power makes the large scale 
deployment  of enabling technologies justifiable, 
in order to ensure transition of the current grid 
into a smarter grid. Smart grid utilizes a real-time 
two-way communication system which has the 
capability  to control the electricity  demand in an 
adaptive manner. By enabling controllability  of 
the electricity demand, the demand at peak hours 
can be shifted  to off-peak hours thus reducing 
the generation costs. The smart grid places key 
emphasis on the role of consumers in electricity 
market operations [6].

Demand  Response (DR), an essential key  feature  
of the smart grid, can be defined as  change   in  
consumption  of electricity by the customers in 
response to the changes made in the price of 
electricity by the Utility Company or retailer over 
a period  of time. There are several DR strategies, 
such as  1) Rate or price based DR programs; 2) 
Incentive-based DR programs  and 3) Demand 
reduction  bids [7]. Demand response is an 
effective way of controlling  demand as it applies 
different rates at different hours throughout  the 
day. By this program, the users  can considerably  
reduce their electricity bills by shifting the 
consumption of their elastic loads from peak 
hours to off peak hours.

As EV load is deferrable  by nature  and can be 
seen  as an increased  load on the system,  the 
large scale adoption of EVs make  it essential  for 
the utilities to avail  adequate DR programs for 
EV users.  The elastic  nature of EV load enables  
the customers  to shift their load from peak to off 
peak period, reducing energy costs, overall cost 
of generation by smoothening the load curve, 
market  prices of electricity hence preventing 

the generating  companies  from exerting market 
power. In our work we focus on the rate or price- 
based  DR programs.  In this type of DR program,  
DR is implemented  through approved  utility  
tariffs in deregulated markets according to which 
the price of electricity varies with time so as to 
motivate customers to shift their consumption.

Recent  studies  on DR have  focused  majorly 
on the two areas:  retailer oriented and customer 
oriented.  Considerable amount of work has 
been done on supply-demand balancing and 
market clearance in power systems [8]. At the 
planning and generation level, these studies have 
focused  on the eco- nomic aspects  but have  
not considered  user payoff as  an important 
component.  Work on the user-utility attempts  
to maximize their utilities, without considering  
the generation cost or revenue of the retailer or 
UCs. This fact has motivated us to address the 
payoff maximization of EV users along with the 
revenue maximization  of the retailer. We aim to 
bridge the gap between the two existing research 
directions through this work. Some work has 
been done in the past to design games for demand 
response [9]- [10]. Energy consumption games 
to offer an incentive to the users who cooperate, 
are formulated in [9] and [11]. However,  the 
games are designed considering users   as  the 
only players. Stackelberg   games  which take 
place between retailers  and users were proposed 
in [12] and [13], once the retailer announces its 
electricity price in order to maximize its revenue,  
each user decides  its consumption accordingly to 
maximize its utility. However, this game doesn’t 
consider the constraint of charging requirements 
of EVs. In [10], an optimal ToU pricing method 
using game theory  has been introduced  without 
considering user constraints. In [14], a  demand  
response  problem   has  been  proposed  as a  game 
between a retailer  and customers considering  the 
constraints of EV charging at home.

To the best of our knowledge,  much work has  
not been done to capture the interactions  between 
EVs and the grid through distributed models 
and algorithms. Thus in this work we develop  
a model that captures the conflicting objectives 
between the retailer, who seeks to maximize 
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its profit by max- imizing the revenue, and the 
EVs users who seek to minimize their charging  
cost. We have modelled  the demand  response 
problem  as a Stackelberg game between retailer 
and customers considering  the constraint  of 
EV charging  requirements  in various scenarios  
with different types of customers.  In our game, 
the retailer is the leader and customers are the 
followers. The retailer aims to maximize its 
profit by setting electricity price such that the 
charging  requirements of each customer are 
satisfied.  Retailer has  a  prior knowledge  of 
customers’ behavior,  as to how they will  react 
to a particular   price set by the retailer, which 
helps it to strategize accordingly.  Each customer 
decides consumption of electricity according to 
the price declared by the retailer at any hour. A 
utility function to reflect the demand and meet 
the charging requirements of each customer has 
been given and the existence of equilibrium in 
our proposed game is proven.

Fig. 1.	 Model indicating  communication 
between retailer and multiple users 
[14], [15], [16]

2.0	 MODELLING OF THE SYSTEM

We consider N number of customers and one 
retailer  who is responsible  to provide electricity 
to the customers.  As shown in fig 1, there exists 
three layers in our model namely generators, 

retailer and the end-users also known as customers, 
which comprise generation, distribution and 
consumption. The retailer acquires power from 
the generators which is a separate process, which 
is beyond the scope of this paper. We empha- 
size on the interaction  between the retailer and 
the customers. The customers are said to receive 
information  of prices from time-to-time from the 
retailer and they respond to it in terms of demand. 
This communication involving data is performed 
via communication  channels which use WiFi, 
WiMAX, LTE etc. The generation could be 
either from renewable or non- renewable energy 
sources. Though the generators working on fossil 
fuels have power available all the time, which in 
a way assures reliable  supply but they give rise 
to pollution. Whereas, the renewable  energy in  
spite of  being free of  pollution, faces challenge 
due to its inherent intermittency. We however 
suggest  a huge  chunk of electricity coming from 
renewable energy sources otherwise even after 
switching  to EVs there is a possibility  of shift 
in the source of pollution.

The retailer aims to maximize his profit by 
reselling the electricity to customers that he buys 
in the day ahead market. On division of each day 
into T time periods, period index is given by t. In 
order to charge EVs, the customers will have to 
buy electricity from retailer and our focus in this 
paper is on this particular transaction. A contract 
is signed by the retailer to provide electricity to 
its customers for the charging of EVs.

So the retailer is obliged to fulfill the charging 
requirements of EVs. Every hour the retailer  
declares the price of electricity pt and as  a  
response  to this price, every  customer  decides its 
consumption level xt in kW. We have proposed a 
leader- follower game which is Stackelberg game 
in which the retailer who is the leader, adopts 
the strategy based on his knowledge of how the 
consumer will react even before the customers 
who are the followers,  take any decision.

A. Demand modelling of customers

The customers in our model are assumed to have 
both elastic and non-elastic loads. There will be 
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some loads which cannot be controlled  based 
on prices, for example refrigerators, lights etc. 
These loads fall in the category of non-elastic 
loads which will not respond to the change in 
prices on a timely basis. But when it comes to 
EVs, they need to be charged for some time out 
of the total time they are plugged in to the grid. 
This fact makes them elastic  loads as far as their 
energy requirements are met. The EV load can be 
modelled  as:

 	  ...(1)

Where µc , Ei  and δ represent charging efficiency  
of battery, energy requirement (in kW) of an EV to 
get fully charged, and rate of maximum charging 
for customer i in kW respectively. The charging 
period interval is denoted by Ci  and it is given 
as Ci  = [Si , Fi ], where Si  indicates the start 
of charging and Fi  denotes the end of charging.

A utility function as a function of x is defined in order 
to express degree of satisfaction on consumption of 
x units of electricity in some given time. The utility 
function considered by us is non-decreasing, there is 
a decrease in marginal satisfaction with an increase 
in consumption, limit is imposed on it and on same 
amount of consumption, the customer with higher 
weight derives higher satisfaction. We have considered 
the utility function as taken in [17], it is a quadratic 
function where marginal satisfaction decreases linearly. 
It is given by:

(2)

where xi  is the consumption of electricity in 
kilowatts and wi  is the weight of customer i. Here 
it can be seen that the maximum utility  occurs  at 
x  = δi   and it doesn’t increase beyond that value.

B. Cost modelling of retailers

The cost at which electricity is bought by the 
retailer from the generators  varies from time-to-

time. As seen  from the recent  research [18], how 
to model the cost function with reference to the 
amount of electricity is a hot area of research but 
beyond the scope of our paper. An assumption 
about the cost function is that it is differentiable,  
increasing and convex function with respect to x.

3.0	  DESIGN OF STACKELBERG GAME

A natural paradigm to model the behaviors of the 
retailer and users along  with their interactions 
is provided by Game theory. We propose a 
Stackelberg game with one retailer and n- 
customers. Initially, the retailer decides upon a 
set of prices in order to maximize its profit. The 
retailer comes up with these prices  based on 
his knowledge of customers’ behaviors and he 
informs  customers about it. Then the customers 
respond to these prices by adjusting an optimal 
consumption of electricity. Since the retailer acts 
first followed by the customers, who make their 
decisions  based on the prices  set by the retailer, 
these are sequential  events with a leader and many 
followers. Initially, we analyze the customers’ 
behaviors later we do the same  for the retailer 
as  well, hence  we adopt a  backward induction 
technique for reaching at an equilibrium point of 
the Stackelberg  game [14]. The optimal solution 
forms the equilibrium of the game.

A. Customer Side Analysis

Each consumer will decide it’s consumption level 
according to the prices to maximize it’s benefits. 
The payoff function of  customer is given below:

	  ...(3)

The first term represents the utility that customer 
i derives on consumption of xi   with weight wi . 
The second term is expenditure of customer i. The 
payoff function  can be said to be differentiable  
because the utility function is differentiable and 
the expenditure term is linear.

The first derivative of payoff is

	  ...(4)
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Using the condition of stationary point for 
the payoff function = 0, we arrive at best 
consumption response for a price p:

	  ...(5)

It can be seen from (5) that the optimal 
consumption   of each customer i depends on 
the maximum  charging rate (δi ), declared price 
(p) and weight (wi ).

B. Retailer Side Analysis

An assumption is that before the retailer sets the 
price, he is aware of each customer’s requirements, 
like Ei , Ci , δi  and wi . The retailer decides the 
price pi  so as to maximize his profit by speculating 
that  (p) is consumption by consumer i. If P is 
the final decision vector, the retailer sets for its 
consumer at each hour, we can find the hourly 
payoff of retailer  as follows:

 	  ...(6)

where R(.) is the revenue generated as a function 
of price p, and C(.) is the cost of generating 
the electricity as a function of demand X. The 
revenue is basically price multiplied  by total 
consumption of all customers, mathematically it 
is represented as  We use a quadratic 
cost function C(Xt) = a(Xt)2, from [19], where Xt 

is the total load in hour h. The cost function is a 
concave, increasing, and differentiable function, it 
includes price-elastic load of each customer also 
the consumption by residential and commercial 
base loads. It is given by  is 
the total residential and commercial base loads at 
t. Optimization Problem for retailer is as follows:

subject to:

In order to assure a feasible solution, the charging 
requirement of each customer should be less than 
that amount when for the entire charging interval, 
the customer would charge at the maximum 
charging rate. It is mathematically represented 
as:  

1) Single-customer case: Now we illustrate the 
problem for a single customer case here. Consider 
the optimization problem (P), we try to maximize 
retailer’s payoff when a single customer is 
involved. By using  from (4) in (P), we can 
formulate the optimization problem as follows: 

	  ...(7)

subject to: 

	  ...(8)

	  ...(9)

In (5), since x/(p) is zero for price value greater 
than the weight of customer, optimal solution 
will not exist for any price more than the weight. 
So, we consider only the prices less than the 
weight, i.e.  In that case, substituting 

 in (P1), we get:

 	  ...(10)

The constraint becomes:

	 ...(11)

It can be seen from (10) that the objective function 
has become negative quadratic concave function 
and from (11), we can say that the constraints are 
linear. Hence, (P1) is a

problem of convex optimisation. We find p*using 
Particle Swarm Optimization(PSO) as explained 
in Section V. For the sake of simplicity, we are 
giving the mathematical formulation of the case 



350	 The Journal of CPRI,  Vol. 13,  No. 2,  June 2017

when for all   all base loads are zero. For this 
case, the solution is:

	  ...(12)

and the consumption by each customer is given 
by:

 	  ...(13)

2) Multiple-customers’ case: Using the previous 
results for single-customer case, we extend it 
for multiple-customers case. As the optimization 
problem P isn’t convex, by adding an assumption, 
we make it convex. We have derived the solution 
for  in case of single customer, hence 
when it comes to multiple customers, for the 
above results to hold good, we add the following 
constraint:

	  ...(14)

As a result of this, R  xt n 
becomes a concave function as 
for all n 2 N. Also, the cost function is concave 
as composition of two functions that are concave 
is concave. This makes P, a convex optimization 
function.

4.0	 OPTIMAL SCHEDULING

In Stackelberg game retailer and customer cater 
to their own profits while in optimal scheduling 
the only aim is to minimize the generation 
cost meanwhile satisfy the customers’ charging 
requirements. Hence, there is no need for price 
signaling in order to enable consumption control.

The optimal scheduling problem is given as:

	 ...(15)

	  ...(16)

	  ...(17)

1) Single-customer case: For the case of single-
customer, the objective function can be written as 

  Consider the case with zero 
base loads, then the solution turns out to be:

 	  ...(18)

As the only aim of this optimization problem is 
to minimize the cost of generation, the electricity 
consumption level needs to be made as much flat 
as possible. For same base load throughout the 
day, (18) is the consumption value. However, 
when the base loads differ on an hourly basis, the 
results also vary.

2) Multiple-customers’ case: The objective 
function in this case is G(Xt) =  
which is a convex optimization problem to 
minimize the generation cost. For details of the 
solution method refer to section V. This turns 
out to be an optimization problem that explodes 
dimensionally when more EVs are deployed in 
the system. This calls for special techniques for 
solving such optimization problems as mentioned 
in section V. 

5.0	 SOLUTION TECHNIQUE

The Solution Technique  used is PSO which is 
an evolu- tionary meta-heuristic algorithm. PSO is 
a continuous  domain multivariable search optimizer  
that is inspired by the behavior of migratory  birds. 
The agents are randomly  generated in the search space 
and they move under the influence  of social effect and 
self-experienced effect along with the inertial motion 
to go to successive positions  as iterations  move head. 
The idea is that the whole population set moves toward 
the global minimum  as a swarm  of birds and finally 
reach the near-optimal solution. This technique was 
proposed by Kennedy and Eberhart in 1995 and has 
since been widely  used as an optimization tools in may 
fields.

PSO is a real domain function optimizer. The 
particles are randomly initialized in the search 
space and they move every iteration based  the 
social, inertial and self-effects.  This is a meta-
heuristic   approach  and can solve  any function 
with constraints like a black  box. This section 
describes how PSO is used in this paper to solve 
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the Stackelberg Game problem. PSO is made to 
solve the price setting problem for the follower 
given a speculative  equation  for consumer 
consumption that maximises the consumer utility 
is already known. This will allow the decision 
variables (prices to be set by retailer in this case) 
to be set by PSO while meeting the required 
constraints. The process of PSO solving the 
Stackelberg problem is shown in the flow chart 
in Figure 2.

The objective of the PSO would be to optimize  
and max- imize the profit for the retailer who is 
the follower in this case. The PSO sets the final 
prices to maximize the profit on speculative  
consumption  as described  in the section III.  On 
the other side PSO can also be used  to solve an 
optimum scheduling of loads instead of setting 
prices, with the main objective  to reduce  the 
total cost of  consumption  for  the retailer. This 
is the global optimum consumption to minimize 
the total cost of electricity while satisfying the 
constraints as mentioned  in section IV. The flow 
chart Figure  3 describing the implementation of 
PSO for optimal scheduling is shown below:

Fig. 2.  	Flowchart of PSO as applied  to solve 
Stackelberg game

case. Figure 4 shows the equilibrium  prices 
obtained for one, two, three and five customers’  
cases game as set by the UC for ten hours. The 
ten hours are basically 8pm in the evening to next 
morning 6:00am. Since, we consider at-home 
charging of EVs in our analysis, this duration is 
justifiable  as most of the EVs are parked at night 
and are available for at-home charging. Here, the 
analysis has been performed on historical  data. 
Table I gives the values of different  parameters 
for different number of customers’  cases. For the 
single customer  case, we have taken the following 
values for the variables  in our game: w=10, 
delta=5.4 and energy requirement  as 8.5kWh.  
Similarly, as  the number of customers go on 
increasing their weights are assumed to be same 
while the charging  rates in different number of 
customers  cases are summed up to give the total 
charging rate. Energy requirements of number of 
customers are also summed up in the multiple EV 
customers’  case.

6.0	  TEST SYSTEM

Fig. 3.  Flowchart of PSO as applied  to obtain 
Optimum solution
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Here we have considered various  cases with 
different num- ber of EV customers participating  
in DR programs, in order to study the applicability 
of our proposed  game. Beginning with one 
customer case (the term 'one customer'  refers to 
one EV customer and so on and so forth), we have 
performed our analysis for two, three and five 
customers cases. The proposed Stacklberg  game 
has been compared with optimum scheduling

TABLE 1
DATA  FOR SINGLE, TWO, THREE AND  FOUR 

CUSTOMERS’ CASE
Different 
parameters

Single 
customer

Two 
customers

Three 
customers

Five 
customers

w δ(kW )
E (kWh)

10
5.4
8.5

10
10.8
17

10
16.2
25.5

10
27

42.5

7.0	 RESULTS AND DISCUSSION

On solving the Stackelberg  game with  PSO 
as  an op- timization tool, we obtained  the 
equilibrium prices. Based on these  prices, the 
consumption  was  determined  for  the customer. 
In order to compare the results of our game with 
optimum case,  we determined  consumption  
using optimum scheduling also, where the only 
objective is to minimize the cost of consumption. 
As the objective for optimum case  is to minimize 
the cost, it  shows  the tendency  to flatten the 
electricity consumption. Both the optimum and 
Stackelberg scheduling  methods were used.  In 
Figure 5, the variation in electricity consumption  
of  one EV customer  with time is shown,  as the 
prices change according  to Stackelberg game and 
Optimum  scheduling methods.

Fig. 4.  Stackelberg game prices for different 
number of EV customers

Fig. 5.  Electricity consumption of single EV 
customer in Stackelberg game and 
optimal  scheduling  case

Fig. 6.	 Electricity consumption of two EV 
customers in Stackelberg game and 
optimal  scheduling  case

Fig. 7.	 Electricity consumption of three EV 
customers in Stackelberg game and 
optimal  scheduling  case

The Load,  Base and Optimal schedules for two 
customers case is shown in Figure 6. It can be seen 
that the EVs charge only for two hours according 
to the prices obtained by Stackelberg game and 
the consumption according to Optimum case is 
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com- paratively more uniform. While talking 
about three customers case, Figure 7 shows how 
the charging occurs majorly during the two hours 
when the prices obtained from game are very 
low. The optimum  case tends to have a uniform 
consumption on the other hand. Similarly, Figure 
8 shows the consumption for five customers case 
and the charging of EVs majorly takes place in 
the beginning of the charging period, according 
to the game because the prices are low during this 
time period. While the consumption according to 
optimum  case again tends to be flatter. In case 
of Stacelkberg game, the customer consumption 
pattern for any multiple customers  case is peaky 
(high peak to average ratio) as seen  from Figure 
5, 6, 7 and 8. While the optimal consumption 
pattern for the customers  has a close to unity 
peak to average ratio.NO

Fig. 8.	 Electricity consumption of five EV 
customers in Stackelberg game and 
optimal  scheduling  case

8.0	 CONCLUSION

With the increasing concern over climate change 
and global warming, large scale deployment of EVs 
is a potential  solution. To motivate customers to 
adopt to EVs and to protect the grid from surge in 
peak demand, we have formulated  a Stackelberg 
game based demand response program,  in order 
to manage the EV charging.  This game  is 
essentially  designed to address the interaction 
between   a  single retailer and multiple EV users 
meanwhile  maximizing the payoffs of all the 
entities involved.  PSO has been used as the tool 
for optimization. A Stackelberg game for single 

customer and two customers’  case is discussed 
and compared with that of optimum charging 
in both the cases. The electricity consumption 
patterns obtained from Stackelberg  game and 
Optimum charging are different and indicative  of 
the fact that appropriate  pricing strategy needs to 
be adopted.
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